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Abstract

The U.S. National Park System contains some of the world’s most spectacular natural resources and

attracts more than 300 million visits each year. Combining individual-level surveys with fifteen years

of park-level visitor counts, I estimate a recreation demand model for 140 national parks, nearly all

those protected for their natural significance. Between 2005 and 2019, the annual recreational surplus

generated by these parks grew 31 percent and peaked at $12 billion, almost five times the National

Park Service’s 2019 operating budget. The estimated model also produces a national park awesomeness

index. Iconic parks like Yellowstone, Glacier, and Grand Canyon often rank highly, and parks with wide-

ranging elevation, water resources, favorable temperatures, and charismatic wildlife, including bison, elk,

and redwood forests, tend to be more awesome.

1 Introduction

The U.S. National Park System protects the country’s most treasured sites, scenery, and wildlife, including

world-famous destinations like Yellowstone and the Grand Canyon, seashores like Cape Hatteras and Point

Reyes, historic points of interest, and much more. These sites attract 300 million visits each year, generating

surplus for visitors and supporting local economies. Their significance is expressed most succinctly with their

nickname, “America’s Best Idea” (Burns & Dayton, 2009).

Despite the national parks’ idyllic aura, the National Park Service (NPS) faces tradeoffs and political

pressure like other government agencies. As a result, the NPS has long sought to quantify the benefits that
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the national parks provide. These efforts date back to at least the 1940s when A.E. Demaray, the Associate

Director of the NPS, wrote to ten experts regarding how to “evaluate the benefits of the national parks”

(U.S. NPS, 1949). The consultants’ responses highlighted two categories of benefits: visitors’ recreational

enjoyment and the impact of visitor spending in communities surrounding the parks. Most consultants

doubted the feasibility of valuing recreational enjoyment in dollar terms. Only one, Harold Hotelling, outlined

a clear strategy, and while his response would eventually help spawn the recreation demand literature, it was

overshadowed by the other consultants’ skepticism. On the other hand, several experts were optimistic about

valuing the local economic impacts of visitor spending.1 Nearly 80 years after these correspondences, the

NPS’s approach to measuring the parks’ economic benefits resembles these consultants’ general sentiment.

The NPS reports annual “Visitor Spending Effects” valuing the national parks’ local economic impacts,

but no consistent and systematic effort values the recreational benefits the parks provide visitors (Cullinane

Thomas & Koontz, 2020).

Nonetheless, valuing the recreational surplus the parks provide remains important. For its entire exis-

tence, the NPS has sought to provide recreational access while simultaneously preserving resources for future

generations (“U.S. Code Title 16 - Organic Act”, 1916). This mission inherently involves tradeoffs between

allowing visitors to enjoy park resources and restricting access to preserve them. Thus, measuring visitors’

recreational surplus, and how this surplus changes over time, speaks directly to the NPS’s founding mission.

Additionally, recent global and national natural capital accounting initiatives seek to systematically track

the value of environmental assets (Fenichel, 2024; United Nations, 2025). These initiatives make the national

parks, some of the most famous natural resources in the world, an important line item on the federal balance

sheet.

This paper values the recreational surplus generated by 140 U.S. national parks from 2005 through 2019

and explores which park attributes create (and erode) value. This sample of parks includes roughly all those

in the contiguous United States protected for their natural, rather than historic, resources. To value the

parks’ recreational surplus, I construct a repeated Random Utility Model (RUM) of park visitation. Each

month, individuals choose whether to visit a park, which park to visit, and whether to drive or fly on their

trip. The utility of visiting a park depends on the travel costs required to access it and the park’s attributes,

including elevation, water resources, wildlife, infrastructure, and a measure of congestion—the average daily

visitation to the park in the month. I embed all park attributes within park-by-month fixed effects, which

I call “park effects”. These parameters isolate the mean utility of visiting a park after controlling for the

travel costs of accessing it. In plain terms, the park effects provide a national park awesomeness index.

I combine two main sources of visitation data to estimate the model: the 2008 and 2018 waves of a

1Banzhaf (2010) discusses these correspondences and the broader state of benefit-cost analysis at the time of their writing.
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nationally representative telephone survey administered by the NPS and monthly, park-level visitor counts

from the Visitor Use Statistics database. I first estimate the model during the two survey periods. Given

these parameter estimates, I calibrate the model so that the predicted visitation for American Community

Survey microdata exactly matches the monthly visitor counts from January 2005 through December 2019.

In effect, I filter the monthly visitor counts through the structural model, transforming them into estimates

of monthly park awesomeness. Finally, I regress the panel of park effects on park attributes to understand

which attributes influence park awesomeness. Following Timmins and Murdock (2007), this park attribute

regression accounts for the endogeneity of congestion using an instrumental variables strategy that exploits

variation in the quality of substitute parks. With the estimated model, I value the recreational surplus

provided by all 140 parks jointly, as well as the surplus provided by individual parks. Note that removing

an individual park from the choice set decreases welfare through two channels. It eliminates a viable choice

alternative, and it increases congestion at other parks in the system.

This analysis produces four sets of findings. The first set describes the national park awesomeness

index. Iconic parks, like Yellowstone, Glacier, Grand Canyon, and Yosemite, often rank highly. Yet, the

awesomeness index varies substantially month-to-month. Yellowstone and Glacier rank 2nd and 3rd in the

July index but drop out of the top ten in the winter months. On the other hand, parks in warmer climates,

including Grand Canyon, Joshua Tree, Arches, and Zion, rank more highly in cooler months.

The second set of findings explores how specific attributes influence parks’ awesomeness. On average,

visitors prefer parks with coastline and large waterbodies, iconic wildlife, like redwood forests and bison,

wide-ranging elevation, lower congestion, and daily high temperatures between 65 and 80◦F. While many

attributes vary little over time, posing a challenge for causal inference, the month-to-month variation in my

park effects makes a causal interpretation more plausible for congestion and weather variables.

The third set of findings describes the surplus generated by individual parks. The median national park

yields $29 million of recreational surplus per year, nine times larger than the median park budget of $3.6

million. Both park awesomeness and travel costs determine which parks provide the most surplus. Parks

relatively close to large population centers, which have low travel costs for many people, tend to be highly

valuable. For example, Gateway National Recreation Area, near New York City, generates $492 million

of surplus per year, the second-most of any park. Several of the most awesome parks are also among the

most valuable; Grand Canyon generates $333 million of surplus per year, sixth-most of any park. However,

remoteness and highly seasonal awesomeness limit the surplus produced by some of the most iconic parks,

including Glacier and Yellowstone. Accounting for congestion spillovers meaningfully impacts these surplus

estimates. Between 17 and 44 percent of each park’s recreational surplus comes from decreasing congestion

at other national parks.
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The final set of findings presents the joint recreational surplus of the 140 parks in the sample and explores

how and why this surplus changed over time. I estimate that these parks provided $150 billion in recreational

surplus across the 2005 to 2019 analysis period, about $10 billion per year. This annual surplus is four times

larger than the NPS’s operating budget, which was $2.5 billion in 2019. Tracking recreational surplus over

time, I find that annual surplus grew 31 percent over the analysis period and 24 percent between 2013

and 2019 alone. Changes in unobserved factors—system-wide, month-of-sample fixed effects and residuals—

account for roughly half the increase in surplus. This finding aligns with previous work documenting the

importance of social media and marketing campaigns in driving increased visitation (Drugova et al., 2021;

Wichman, 2024). Changes in demographics and travel costs have a smaller effect, accounting for a quarter of

the increased surplus. Although I cannot pin down the exact reason for the increased interest in the national

parks, I rule out changes in weather conditions, which explain almost none of the change in surplus.

It is worth noting that my surplus estimates do not reflect the full array of benefits the National Park

System provides society. In particular, my estimates do not capture non-use, existence values. Furthermore,

my recreational surplus estimates are likely conservative. Following standard practice in recreation demand

literature, I drop visits that were not the primary purpose of a respondent’s trip, because visitors did not

trade off their full home-to-park travel cost to access the park alone (Lupi et al., 2020). Across my sample,

roughly 46 percent of visits occur on non-primary purpose trips. Unfortunately, my survey data do not

list every destination a respondent visited on their last trip, just the park they visited most recently. This

feature precludes estimating a more sophisticated model that accounts for surplus generated by non-primary

purpose trips.

This paper constitutes the most comprehensive analysis of demand for the U.S. National Park System to

date. Previous nationwide studies of demand for the national parks tend to focus on visitation as the main

outcome. Examples of these include Fisichelli et al. (2015), who predict that climate change will increase

system-wide visitation by 8–23 percent, Keiser et al. (2018), who find a that air pollution decreases visitation,

and Wichman (2024), who shows that social media has increased visitation. In a broader analysis of local

economic impacts, Szabó and Ujhelyi (2024) find that receiving an official “National Park” designation

increases visitation.2 Other papers studying visitation at the national level include Bergstrom et al. (2020),

Cai (2021), and Henrickson and Johnson (2013).

Another set of papers apply recreation demand models to value parks and their resources. These papers

tend to be “narrow in scope, focusing on particular sites and/or activities” (Walls, 2022). Exceptions include

Parsons et al. (2021) who value national parks across the Southwest using an innovative “site-portfolio” travel

2While all sites in the National Park System are typically called national parks, each site has an official designation on each
site. These designations include National Park, National Seashore, National Recreation Area, etc.
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cost RUM, and Gellman et al. (2025) who value the welfare impacts of wildfire smoke at federally-managed

campsites in the western United States, many of which are located in or near national parks. In the closest

study to mine, Neher et al. (2013) estimate willingness to pay to visit 58 national parks using park-specific

on-site surveys conducted between 1994 and 2009. They estimate WTP for visiting each park separately, then

regress WTP estimates on park attributes to predict the value of a trip to each national park. Multiplying a

park’s WTP estimate by its visitation, they estimate the total recreational surplus generated by the National

Park System at $28.5 billion per year.

At least one previous study has estimated the combined use and non-use value of the National Park System

with stated preference methods. Haefele et al. (2020) execute a choice experiment soliciting respondents’

willingness to pay additional income taxes to prevent hypothetical cuts to park acreage and programming.

They estimate the total value of the national parks and NPS programs at $92 billion per year.

My analysis fills a void at the intersection of these visitation and valuation studies. Unlike national visi-

tation studies, I value the national parks’ recreational surplus in dollar terms, which is critical for informing

park management, damage assessments, and natural capital accounting initiatives. Unlike prior valuation

studies, my analysis has a broad geographic and temporal scope. By covering 140 parks over fifteen years, I

fill gaps in survey coverage and track how preferences for parks and their attributes change over time.

My model and estimation procedure also make methodological contributions to the recreation demand

literature. Several recent papers call for more rigorous identification in recreation demand models (Ji et al.,

2020; Lupi et al., 2020), and new applications make advances in this regard (Dundas & von Haefen, 2020;

Earle & Kim, 2024; Kuwayama et al., 2022). Within this literature, my methods are most closely related to

English et al. (2018) and Timmins and Murdock (2007). Like me, English et al. use a calibration procedure

to combine individual-level surveys with site-level visitor counts. They exploit their visitor counts’ longer

time span to value the welfare impacts of the Deepwater Horizon oil spill, which occurred before their survey

period. Like Timmins and Murdock, I linearize part of the travel cost RUM estimation problem to estimate

preferences for congestion using instrumental variables.

I contribute to this literature by exploiting complementarities between these calibration and linearization

techniques. Without calibration, a researcher can only analyze events within their survey period, which may

be brief due to the costs of collecting data. On the other hand, the prevalence of site-level visitation data

makes calibrating a model beyond the survey period feasible in many empirical settings (New York OPRHP,

2025; Utah DNR, 2025; Washington State Parks, 2025). Without linearization, the complexity of non-

linear estimation encourages parsimonious model specifications and limits the set of feasible identification

strategies. Indeed, these challenges have long made linearization a popular tool for identifying preferences in

RUMs (Berry, 1994; Berry et al., 1995). Thus, combining calibration and linearization obtains the benefits
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of both techniques; researchers can leverage an array of identification strategies to value resource changes

over extended time periods.

2 Model

In this section, I present a model of national park visitation. The model departs from the standard recreation

travel cost model in two ways. First, individuals jointly choose which national park to visit and how to

travel. By jointly modeling the park and travel mode choices, I combine elements of the recreation demand

literature, which typically focuses on the park/site choice, and the transportation literature, which has long

modeled travel mode choices (McFadden, 1974).3 Second, congestion levels arise as an equilibrium outcome

in my model. While congestion often influences recreation decisions, many papers abstract from congestion,

because it complicates modeling, estimation, and welfare analysis. Following Timmins and Murdock (2007),

I include congestion in the utility function and solve for equilibrium congestion levels when conducting

welfare analyses. Public interest in overcrowding at national parks suggests that accounting for congestion

is important in this empirical context.4

Suppose that individuals repeatedly choose whether to visit a national park, which national park to visit,

and whether to drive or fly to the park. Denote the set of national parks J = {1, 2, ...J} and the set of

travel modes M = {R,F}, where R and F indicate driving and flying, respectively. Let j index the set

of national parks and j = 0 denote the outside option: the best way of spending the month that does not

involve visiting a national park. I group historic sites in the National Park System as a composite alternative

denoted j = J +1. Given this choice set, let Uijmt denote the utility individual i receives from visiting park

j using travel mode m during month t, where

Uijmt =



βDDi + ϵi0t j = 0

δjt + βTCTCijRt + ϵijRt j ∈ {1, ..., J},m = R

δjt + βF + βTCTCijF t + ϵijF t j ∈ {1, ..., J},m = F

δJ+1,t + ϵi,J+1,t j = J + 1

(1)

In equation 1, the βTC coefficient represents the marginal disutility of travel costs; the βF coefficient

represents the preference for flying relative to driving after controlling for travel costs, TC; the vector Di

contains demographic variables, and ϵ is unobservable to the econometrician. For j ∈ {1, ..., J}, I call the
3An exception to much of the recreation demand literature, Hausman et al. (1995) develop a model of site and travel mode

choices to value the recreational welfare impacts of the Exxon Valdez oil spill.
4Congressional subcommittee statement: https://www.doi.gov/ocl/overcrowding-parks

Media coverage: https://e360.yale.edu/features/greenlock-a-visitor-crush-is-overwhelming-americas-national-parks
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park-by-month fixed effect, δjt, the “park effect”. It captures the mean utility provided by park j in month

t after controlling for travel costs and the quality of other alternatives. Ranking the park effects produces a

national park awesomeness index.

I assume that each error term vector, ϵi..t, is independent and identically distributed following a Gener-

alized Extreme Value (GEV) distribution. I specify a GEV distribution that implies a two-nest structure,

where the no visit alternative, j = 0, is in its own nest. This distributional assumption allows error terms for

“visit” alternatives to be correlated, partially relaxing the independence of irrelevant alternatives assumption.

Under this nesting structure, the probability of choosing each alternative has a closed form:

Pijmt =



exp(Vi0t)

exp(Vi0t) + (
∑J+1

k=1

∑
n∈M exp(Viknt/λ))λ

, if j = 0

(
∑J+1

k=1

∑
n∈M exp(Viknt/λ))

λ

exp(Vi0t) + (
∑J+1

k=1

∑
n∈M exp(Viknt/λ))λ

exp(Vijmt/λ)∑J+1
k=1

∑
n∈M exp(Viknt/λ)

, if j ∈ {1, ..., J}

(
∑J+1

k=1

∑
n∈M exp(Viknt/λ))

λ

exp(Vi0t) + (
∑J+1

k=1

∑
n∈M exp(Viknt/λ))λ

exp(Vi,J+1,t/λ)∑J+1
k=1

∑
n∈M exp(Viknt/λ)

, if j = J + 1

(2)

where Vijmt is the deterministic portion of utility from equation 1.

Two fractions comprise the choice probabilities for the visit alternatives, j > 0. The first fraction is

the probability of choosing any of the visit alternatives. The second fraction is the probability of choosing

a specific park and travel mode combination conditional on choosing a visit alternative. If an individual

chooses the no visit alternative, then they do not select a specific park and travel mode. The parameter, λ,

is the dissimilarity coefficient. The model is consistent with utility maximizing behavior when λ is between

zero and one (Herriges & Kling, 1996). Values closer to one imply the visit alternatives are less similar.

When λ equals one, the choice probabilities simplify to conditional logit choice probabilities.

To recover preferences for park attributes, I decompose the park effects for parks j ∈ {1, ..., J} using

a correlated random effects model. This model is similar to a model with park-by-season-of-the-year fixed

effects. However, such fixed effects would subsume preferences for time-invariant attributes. This correlated

random effects model replaces the park-by-season-of-the-year fixed effects with time-invariant park attributes

and park-by-season-of-the-year means of time-varying attributes. For time-varying attributes, coefficient

estimates are numerically equivalent to the fixed effects model, but I preserve cross-sectional variation to

identify coefficients on time-invariant attributes (Mundlak, 1978; Wooldridge, 2019). Recovering coefficient

estimates for time-invariant attributes is useful, because some park attributes do not vary meaningfully over

the analysis period—e.g., elevation. Specifically, I decompose the park effects as
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δjt = αXXjt + αZZj + ϕt + ᾱXX̄js(t) + ϕ̄j,1,s(t) + ...+ ϕ̄j,180,s(t) + νjt (3)

where Xjt and Zj contain time-variant and -invariant park attributes, and ϕt is a system-wide, month-of-

sample fixed effect. X̄js(t) represents the mean of the time-variant attributes at park j within the season-of-

the-year of month t, and the ϕ̄j,l,s(t) terms are coefficients on the mean of the month-of-sample, l, indicator

variable within the season-of-the-year of month-of-sample t, s(t), at park j.5 The αX , αZ , and ᾱX terms

are coefficient vectors, and the error-term, νjt, captures all unobservable park attributes.

The vector of time-variant park attributes, Xjt, includes the anticipated congestion at park j in month

t, s̃jt. In equilibrium, anticipated congestion levels equal model-predicted congestion levels at parks j ∈

{1, ..., J}.6 The model-predicted congestion at park j in month-of-sample t can be calculated by summing

choice probabilities across individuals and travel modes:

ŝjt =
∑
i

∑
m

Pijmt (s̃jt) (4)

where the choice probability is explicitly written as a function of anticipated congestion, s̃jt. For a class

of random utility sorting models, Bayer and Timmins (2005) show that a congestion equilibrium exists and

that, if congestion is a disamenity, the equilibrium is unique. My model differs from the class they examine,

because parks can be visited either by driving or flying and congestion does not impact utility of the outside

option or the historic site composite alternative. Appendix B adapts their proofs to confirm that their

existence and uniqueness results extend to my model.

3 Data

My main data sources describe individual-level visitation, aggregate park-level visitation, and the physical

and institutional attributes of the national parks. Here, I discuss each in turn.

3.1 Telephone surveys

The individual-level visitation data come from the NPS’s Comprehensive Survey of the American Public, a

telephone survey designed to learn about visitor experiences and gauge public sentiment towards the NPS

5It may seem strange that the park-by-season-of-the-year means of the month-of-sample indicators vary across parks. Note
that I have an unbalanced panel, because some parks are inaccessible in winter months and one new park is added to the
system during my analysis period. With an unbalanced panel, some parks have different denominators when I calculate the
park-by-season-of-the-year means of the month-of-sample indicators.

6This congestion equilibrium does not require anticipated and model-predicted congestion levels to match for the outside
option, j = 0, or the historic site composite alternative, j = J +1. I assume that both these alternatives are unaffected by their
congestion levels.
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and its management practices. Each interview lasts approximately fifteen minutes and includes several

questions regarding respondents’ previous national park visits. I observe two key visitation variables: the

national park each respondent visited most recently and the number of times they visited a national park in

the past two years. For 23 percent of respondents, I also observe whether they drove or flew on their most

recent visit.

Several characteristics of the Comprehensive Survey of the American Public make it useful for studying

national park visitation. First, it is nationally representative. Phone numbers are selected using a regionally-

stratified random sampling design, and individual respondents are randomly selected within each household.

The data include weights to account for the regional stratification and match sample demographic statistics

to Census statistics. I use these weights throughout my analysis. The sampling design includes both visitors

and non-visitors, allowing me to model the extensive margin—the choice of whether or not to visit a national

park.

Another useful feature is that the survey was conducted twice: once in 2008 and 2009 and again in 2018.

The two waves contain identical visitation history questions and similar formats. The waves contain a few

differences relevant for this analysis. The 2008 wave asked a random subset of 1,537 respondents whether

they drove or flew on their most recent visit, but the 2018 wave did not collect travel mode information.

The seasonal timing of interviews also varies between the two waves. The 2008 and 2009 interviews were

split evenly between seasons to account for seasonal variation in visitation. The 2018 survey, citing a lack of

seasonality in the 2008 and 2009 data, conducted interviews from June through November.

The survey also includes information on each respondent’s home location, which is important for calcu-

lating travel costs. In the 2008 wave, I observe each respondent’s telephone area code and state of residence.

When the area code is within the state of residence, I take the largest city in the area code as the home

city when calculating travel costs. For 1.6 percent of the 2008 wave, the area code and state of residence do

not match. In these cases, I assign the largest city in the state of residence as the home city. In the 2018

wave, I only observe state of residence, and I assign a home county by randomly sampling from the state’s

population distribution. Once I assign each respondent a home city or county, I calculate the travel costs

required to reach each national park in the choice set.

I calculate quarterly driving and flying travel costs following English et al. (2018). I describe these

calculations briefly here and provide more detail in Appendix F. I use PC∗Miler to compute driving times

and mileages. I calculate the out-of-pocket, per-mile driving cost as the sum of per-mile maintenance,

depreciation, and gas costs. I use maintenance and depreciation costs from AAA “‘Your Driving Costs”

reports, and I calculate per-mile gas costs using fuel prices from the Energy Information Administration and

fuel efficiency statistics from the Bureau of Transportation Statistics (AAA, 2008; Bureau of Transportation
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Statistics, 2023; U.S. Energy Information Administration, 2024). These calculations produce an average

out-of-pocket driving cost of 26.4 cents per-mile. Driving travel costs also include the cost of travel time. I

follow standard practice in the recreation demand literature and assume the cost of travel time is one third

of each respondent’s wage rate.

My flying travel costs include (1) the cost of driving from a respondent’s home to the origin airport, (2)

the cost of parking at the origin airport, (3) the cost of flying from the origin airport to the destination

airport, (4) the cost of renting a car, and (5) the cost of driving from the destination airport to the national

park. I take average airport parking and rental car costs from English et al. My airfare and route data come

from Table 6 of the Consumer Airfare Report (Office of Aviation Analysis, 2015). I compute travel costs

for sixteen origin-destination airport combinations for each respondent-park pair, and I take the minimum

travel cost across these sixteen combinations as the flying travel cost for each respondent-park pair. I convert

all driving and flying travel costs to 2018 dollars.

Table 1 shows how demographics from the pooled telephone survey sample compare to the general

population. Before weighting, survey respondents tend to be wealthier, older, and more educated. After

weighting, the sample demographic statistics match the general population along many dimensions, including

age, income, race and ethnicity, region of residence, and parental status. The weighted sample remains

more highly educated than the general population. Table 1 also shows basic visitation statistics for survey

respondents. Respondents made five visits in the past two years, on average, and 62 percent visited at least

once. Of the respondents who visited a park in the two years prior to their interview and answered the travel

mode question, about 13 percent flew on their last visit.

The Comprehensive Survey of the American Public has a few weaknesses. It does not include any

information on visit dates, only that the visits occurred within two years of the interview. Additionally,

many less popular national parks are never a “most recent visit,” which poses challenges for an estimation

based on survey data alone. These weaknesses motivate my use of park-level visitor count data to complement

the individual-level surveys.

3.2 Park-level visitor counts

I use monthly park visitor counts from the NPS Visitor Use Statistics database. The counts have a broad

temporal and geographic scope, dating back to 1905 for the oldest parks and covering 383 national parks in

recent years. Counting procedures vary by park and typically involve Park Rangers at entry booths and/or

strategically placed vehicle counters. Many parks use person-per-vehicle multipliers to convert vehicle counts

to person counts. Papers analyzing national park visitation commonly use these data (see, for example,
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Fisichelli et al., 2015; Henrickson & Johnson, 2013; Keiser et al., 2018; Wichman, 2024).

I restrict my analysis to use counts from January 2005 through December 2019, because this period

overlaps closely with the individual-level survey data and the American Community Survey microdata I use

to calibrate the model. To obtain a visitor count for the historic site composite alternative, j = J + 1, I

aggregate counts at national parks that were not protected for their natural resources. When determining

whether parks are protected for their natural resources, I use NPS designations. For all NPS units in the

contiguous United States, the choice set explicitly includes National Parks, National Preserves, National

Seashores, National Lakeshores, National Reserves, National Rivers, and National Recreation Areas, as well

as all National Monuments over 150 acres. I group all other NPS units (e.g., National Monuments less than

150 acres, Historic Sites, Battlefields, and Memorials) in the historic site composite alternative.

I adjust the raw visitor counts to make them more suitable for recreation demand modeling and more

compatible with the individual-level survey data. My adjustment addresses three specific factors: interna-

tional visitation, non-primary purpose trips, and park re-entry. I drop international visitors, because the

survey data include only U.S. residents. I drop non-primary purpose trips, following Lupi et al.’s (2020)

recommendation in their best practices paper. I also correct for park re-entry, because visitors incur the full

travel costs of reaching a park once per trip, not each time they enter a park. Accounting for these factors

requires additional information on international visitation, trip purpose, and re-entry, which I obtain from

109 on-site surveys conducted by the NPS between 1995 and 2019. Appendix E describes this adjustment

in more detail.

3.3 Park attribute data

To understand visitor preferences for park attributes, I compile several datasets describing the national parks

themselves. My park attribute variables include natural features, such as the presence of coastline, large

lakes or reservoirs, and wildlife, as well as parks’ elevation and weather conditions. Some park attributes are

administrative, such as whether a park charges an entrance fee or has an official “National Park” designation.

I also collect information on park trail and road mileage and whether a boat or plane is required for access.

Appendix table A1 provides summary statistics for these park attributes.

My congestion measure is the number of domestic, primary purpose trips per day. In other words, I

divide the adjusted monthly visitor count described in section 3.2 by the number of days in the month. I

opt against using a measure that reflects the density of visitors. Straightforward density-based measures can

produce counterintuitive congestion levels, because park sizes vary dramatically. Gateway Arch NP covers

only 90 acres, while Death Valley NP encompasses over 3 million. Furthermore, visitors do not distribute
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themselves uniformly throughout a park. Rather, they often congregate around major attractions—e.g., Old

Faithful geyser in Yellowstone.

3.4 ACS microdata

When calibrating the model, I use one-year American Community Survey (ACS) microdata to capture

changing demographics in the general population (Ruggles et al., 2021). The ACS includes many of the

same demographics as the telephone survey data (see table 1) and reports the county of residence for about

60 percent of its respondents. If a respondent’s county of residence is censored, I randomly assign a county of

residence based on the population distribution within the Public-Use Microdata Area (PUMA) of residence

using the Missouri Census Data Center’s geographic correspondence tool (Geocorr). With demographics

and counties of residence for all ACS respondents, I calculate travel costs just as I do for telephone survey

respondents.

4 Estimation

This section describes an estimation and calibration procedure designed for the model and data described

above. I present the procedure in three steps. In step 1, I estimate the parameters from equation 1 and the

dissimilarity coefficient using maximum likelihood estimation. In step 2, I calibrate the monthly panel of

park effects across the entire 2005 to 2019 analysis period. Finally, in step 3, I unpack the park effects and

estimate the park attribute coefficients from equation 3.

4.1 Step 1: Maximum likelihood estimation

I begin by estimating the parameters in equation 1 using maximum likelihood. The goal is to find the

parameter values that best explain the visitation information observed in the survey and visitor counts. I

specify a three-part likelihood function that incorporates the two pieces of visitation information from the

survey data: the location of respondents’ most recent visit and the number of visits in the last two years.

Because the individual-level survey data do not include the date of respondents’ visits, I do not estimate the

panel of mean utilities in this first step. Instead, I estimate two cross-sections of park effects, one for each

survey period. Thus, I drop the t subscript from the model in the remainder of this subsection.

Using the choice probabilities from equation 2, the likelihood of observing individual i’s visitation history

is
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Li (β, δ, λ) =
(
ΠJ

j=0Πm∈MP
yijm

ijm

)︸ ︷︷ ︸
(1)

(1− Pi0)
vi︸ ︷︷ ︸

(2)

(Pi0)
(24−1−vi)︸ ︷︷ ︸
(3)

(5)

where vi is the number of visits that respondent i takes in the two years preceding the interview, excluding

the most recent visit, and yijm equals one if respondent i visits park j using travel mode m on their most

recent visit and zero otherwise. The first term represents the likelihood of individual i’s most recent visit.

For this visit, I observe the park visited, and for a subset of respondents, I also observe the travel mode.

The second term represents the likelihood of all other visits in the two years preceding the interview, and

the third term represents the likelihood of all non-visits in the two years preceding the interview.

When maximizing the likelihood function, I constrain the visitation shares predicted by the model to

match the visitation shares observed in the visitor count data for the 2008 and 2018 survey periods, separately.

I impose these constraints by applying the contraction mapping introduced by Berry (1994) and adapted for

the nested logit model by Grigolon and Verboven (2014): δn+1 = δn+λ [ln (s)− ln (ŝ)]. As the optimization

routine iterates over values of β and λ, the contraction mapping solves for the unique vector of 2008 and 2018

park effects, δ, that matches the observed visitation shares (s) and the model predicted visitation shares (ŝ)

in each survey period.

Using the contraction mapping has several benefits. First, it allows me to simultaneously combine

information from the surveys and the visitor counts. Second, the contraction mapping solves for the park

effects, so the optimization routine must search over smaller parameter space, reducing the computational

burden. Third, the contraction mapping allows me to estimate park effects for parks that are never a “most

recent visit” in the survey data.

By including two cross-sections of park effects, I control for all time-invariant attributes when estimating

the other parameters in this step (Murdock, 2006). For example, parks with high travel costs may also exhibit

an unobservable sense of remoteness. The cross-section of park effects control for this omitted variable to the

extent that it is constant across time. Geographic sorting remains an identification concern (Parsons, 1991).

Individuals who value national parks highly may choose to reside nearby in order to reduce their travel costs.

If individuals with low travel costs value national parks more highly than those far away, such that they

would visit more often even conditional on travel costs, then it will bias my travel cost coefficient estimate

away from zero. The travel cost coefficient enters the denominator of all willingness to pay and welfare

measures, suggesting that, in turn, these results would be biased towards zero. Bradt (2025) highlights that

measurement error in the travel cost variable may also bias estimates. Classical measurement error would

bias the travel cost coefficient towards zero and bias welfare measures upward. To gauge the magnitude of

bias from geographic sorting and measurement error, Bradt replicates English et al. (2018) using a control
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function approach that corrects for sorting and classical measurement error. The control function decreases

welfare estimates by about 12 percent. Ultimately, even this control function approach cannot reveal how

geographic sorting and non-classical measurement error bias my estimates. However, I still view my main

surplus estimates as conservative given my inability to capture the value of non-primary purpose trips and

my conservative opportunity cost of travel time assumption.7

4.2 Step 2: Calibration

The maximum likelihood estimation yields estimates of the parameters from equation 1, including two cross-

sections of park effects, one for the 2008 survey period and another for the 2018 period. In this calibration

step, I toss out these park effect cross-sections and use the remaining parameter estimates, the annual

American Community Survey (ACS) microdata, and the park-level visitor counts to calibrate a monthly

panel of park effects from January 2005 through December 2019.

Calibration outside the survey period poses several challenges. First, population demographics may

change meaningfully over the fifteen-year analysis period. I account for these demographic changes by

calibrating the model using annual ACS microdata samples rather than the survey data. The calibration

procedure also requires an assumption on the evolution of the travel cost, travel mode, demographic, and

dissimilarity coefficients. I assume that these parameters are constant across the entire fifteen-year calibration

period. While this is not necessary, early versions of the analysis allowed travel cost coefficient to vary between

the 2008 and 2018 survey periods and recovered similar estimates. Further, Dundas and von Haefen (2020)

allow travel cost coefficients to vary annually in their RUM of recreational marine fishing and obtain fairly

stable estimates from 2004 through 2009.

Given these assumptions, the calibration procedure proceeds as follows. I begin by predicting choice

probabilities for each individual in the ACS microdata.8 Summing these choice probabilities across individ-

uals generates predicted visitation shares for each park in each month, the same frequency as the observed

visitor counts. Beginning with January 2005, I then apply the contraction mapping to obtain the unique

vector of park effects that matches the predicted and observed visitation shares. Iteratively applying the

contraction mapping month-by-month produces a full panel of park effects through December 2019. The

key insight in this step is that I can predict ACS respondents’ choice probabilities without observing their

recreation choices. These predicted choice probabilities allow me to calibrate park effects outside the survey

period.

7Section 6.6 tests the sensitivity of my estimates to other plausible opportunity cost of travel time assumptions.
8I use a random 1 precent sample of the ACS microdata to reduce the computational burden. In earlier tests, I recovered

nearly identical park effects using a 5 percent subsample of the ACS microdata.
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4.3 Step 3: Estimating preferences for park attributes

In this third step, I regress the panel of calibrated park effects on park attributes (equation 3). This regression

has three important features. First, it is linear. Second, I exploit panel variation using a correlated random

effects model. Third, congestion is endogenous, because any unobservable attribute that influences utility

will also influence congestion levels. My discussion here focuses on the construction and validity of my

instrumental variable. Joshi and Wooldridge (2019) describe the econometric properties of instrumental

variables estimation of correlated random effects models in more detail.

I adopt the same congestion instrument as Bayer and Timmins (2007) and Timmins and Murdock (2007).

Specifically, the instrument is the model-predicted visitation given only exogenous park attributes:

ĉIVjt =
∑
i

∑
m

Pijmt(αcong = νjt = 0)

where Pijmt is defined as in equation 2 but the congestion coefficient, αcong, and park-by-month error-term,

νjt, are set to zero.

Note that the model conditions on a park’s observable attributes, so the instrument exploits variation

in the quality of each park’s choice alternatives to isolate exogenous variation in its congestion levels. Put

simply, a park with more appealing alternatives will be less congested, all else equal. Meanwhile, it is

plausible to assume a park’s mean utility does not depend on attributes at alternative parks except through

congestion. For example, the presence of shoreline at Cape Hatteras should not influence the utility a visitor

receives from visiting Yellowstone.

In fact, the instrument’s identifying variation is more nuanced, because the correlated random effects

model exploits within-park-season variation. Therefore, the instrument must predict within-park-season

changes in congestion. Of the variables in my model, only weather conditions, travel costs, and demographics

change within a season, meaning the instrument’s identifying variation comes from changes in these variables.

For example, a month with extreme heat at other parks in the southeast would increase predicted congestion

at Great Smoky Mountains, conditional on its own attributes.

Generating the instrument requires values for parameters from the first step, βF , βTC , and λ, as well as

α and ϕj,s(t). To obtain reasonable values of α, I estimate equation 3 with congestion omitted. Given these

parameter values, I calculate the instrument and estimate equation 3 using instrumental variables.
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5 Valuation

After estimating the model, I value the recreational surplus generated by national parks both individually

and jointly. To estimate the surplus generated by all parks jointly, I calculate the compensating variation

of removing all parks from the choice set. The distributional assumption on the error term leads to a

closed-form equation for compensating variation:

CVit =
1

βTC

ln(exp (Vi0t) + exp (Vi,J+1,t/λ)
λ
)
− ln

exp (Vi0t) +

∑
j

∑
m

exp (Vijmt/λ)

λ



Note that I do not remove the historic site composite alternative from the choice set. Therefore, my

system-wide valuation estimates only reflect the recreational surplus provided by national parks in the

contiguous United States protected for their natural resources.

Valuing an individual park is more complicated than valuing all parks jointly, because inter-site substitu-

tion impacts equilibrium congestion levels. My procedure for valuing individual parks follows Timmins and

Murdock (2007). First, I solve for equilibrium congestion levels with the complete choice set. Then, I remove

one park from the choice set and solve for the new equilibrium congestion levels. The surplus generated by

park j for individual i at time t is the welfare loss of removing park j from the choice set:

CVit =
1

βTC

ln

exp (Vi0t) +

 ∑
k ̸={0, j}

∑
m

exp
(
Vikmt(s

∗
t,1)/λ

)λ
 −

ln

exp (Vi0t) +

(
J+1∑
k=1

∑
m

exp
(
Vikmt(s

∗
t,0)/λ

))λ


where s∗t,0 and s∗t,1 represent equilibrium congestion levels before and after park j is removed from the choice

set. Summing across individuals yields an estimate of the total recreational surplus generated by park j in

month t.
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6 Results

6.1 Travel preferences and demographic heterogeneity

Table 2 shows parameter estimates from the first estimation step. The travel cost coefficient is negative and

significant, as expected. The “fly” parameter, which captures the preference for flying relative to driving,

is also negative. Dividing it by the travel cost coefficient indicates that individuals would be willing to pay

$160 on average to drive rather than fly to their chosen site. The dissimilarity coefficient is between zero

and one, implying the nested logit model is consistent with utility-maximizing behavior.

I interact several sociodemographic variables with the outside option. College graduates and individuals

with higher household incomes are less likely to choose the outside option, and thus, more likely to visit

a national park. Seniors and people with at least one child under 18 are less likely to visit. In terms of

racial and ethnic diversity, non-Hispanic Whites are more likely to visit the parks than non-Hispanic Black

individuals, Hispanics of any race, and non-Hispanics of other races. These race and ethnicity coefficient

estimates align with prior research noting a lack of diversity among national park visitors (Mott, 2016; Xiao

et al., 2022).

6.2 Park awesomeness

I now examine the calibrated the panel of park effects. Figure 1 shows how estimated park effects vary

throughout the year for two parks, Glacier and Great Smoky Mountains. Glacier’s park effects exhibit

dramatic seasonal variation, peaking in the summer and collapsing in the winter. Converting the seasonal

differences to dollar terms, potential visitors are willing to pay $935 more on average to visit Glacier in July

rather than January. Great Smoky Mountains displays more muted seasonality.

I find that park effects are negative for all parks and all months, which indicates that potential visitors,

on average, prefer the no visit alternative to visiting a specific park.9 In the context of the model, individuals

will only choose to visit a park if it has a large, positive error term draw. This finding may be surprising,

as many people incur large travel costs to visit the national parks. To interpret this result, note that survey

respondents average five national park visits in the two years prior to their interview, meaning they choose

the no visit alternative on nineteen of 24 choice occasions. Furthermore, the monthly visitor counts imply

over 95 percent of individuals choose the no visit alternative each month. Given these visitation rates,

negative park effects are reasonable.

9Note that one can easily change the interpretation of the park effects by taking the residual from a regression of the park
effects on month-of-sample fixed effects. After this revision, park effects can be interpreted relative to the other parks, rather
than the outside option.
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By capturing the mean utility the parks provide after controlling for travel costs, the park effects provide a

national park awesomeness index. To aid interpretation, I map the raw park effects to a 100-point scale where

the maximum park effect over the 2005 to 2019 period scores 100 and the minimum scores a 0. Specifically,

I calculate the index for park j in month t as 100 × δjt−δMIN

δMAX−δMIN
, where δMAX and δMIN represent the

maximum and minimum of all park effects. This ranking offers an attractive alternative to rankings from the

popular media, which are typically based on anecdotal experiences or raw visitation counts. Unlike anecdotal

rankings, my ranking systematically incorporates the visitation history of the entire U.S. population. Unlike

rankings based on raw visitor counts, my ranking controls for travel costs and the availability of substitutes

to isolate the appeal of the park itself.

Table 3 shows the ten most awesome parks in March, July, and October 2018. The top tens include

many of the most famous national parks, such as Glacier, Grand Canyon, Yellowstone, and Yosemite.

Surprisingly, Golden Gate National Recreation Area ranks first in all three months. Golden Gate provides

views of the Golden Gate Bridge, beaches, redwood forests, and historic attractions like Alcatraz Island.

It also receives 14.6 million visits per year, the most of any park in the sample. The second most highly

visited park, Great Smoky Mountains, receives 10.1 million. Yet, Golden Gate may be overrated for several

reasons. Although the model controls for the travel costs of accessing each park, it does not control for

complementary destinations near a park. Visitors to Golden Gate likely visit other Bay Area attractions on

the same trip, while Glacier, for example, has fewer complementary attractions in its vicinity. Furthermore,

local residents may visit Golden Gate several times per month, or even several times per week. My modeling

assumption that visitors take at most one trip per month may be appropriate for most people and most

parks, but it is likely too coarse for local residents. If local residents visit frequently, the model will assume

some of these visits come from people living farther away, biasing the park effect upward.

The seasonal variation in park awesomeness is also evident in the top ten rankings. March’s top ten

includes Grand Canyon, Joshua Tree, Arches, Zion, and Saguaro. These southwestern parks are pleasant

in the spring, but they drop out of the top ten in the summer when their weather is hotter than ideal.

Conversely, parks with cooler climates and limited peak seasons, like Acadia, Glacier, Mount Rainier, and

Rocky Mountain, do not appear in the March top ten but rank highly in July. This seasonal variation

also helps to explain why some of the National Recreation Areas and National Seashores rank highly. Glen

Canyon, Lake Mead, and Lake Roosevelt are all centered around large reservoirs, making them popular

boating destinations in warm months. Meanwhile, Gulf Islands offers warmer temperatures and beaches in

March, when many other parks remain colder than ideal.
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6.3 Preferences for park attributes

I now regress the panel of park effects on park attributes to determine what attributes attract (or deter)

visitors and drive the park rankings. Recall that I address two challenges in this regression. First, I

instrument for congestion, because unobservable park attributes influence both congestion levels and the park

effects. Second, I recover preferences for both time-varying and time-invariant attributes using a correlated

random effects model. For time-varying attributes, coefficient estimates are numerically equivalent to a

model with park-by-season-of-the-year fixed effects, while coefficient estimates for time-invariant attributes

are identified from cross-sectional variation.

Table 4 displays results from these park attribute regressions. Column 1 omits congestion and includes a

parsimonious set of park attributes. Although omitting congestion biases these estimates, their direction is

intuitive. Recreators tend to prefer larger parks, parks with wide-ranging elevation, coastal parks, and parks

with large lakes or reservoirs. Water resources (coastline, large lakes, or reservoirs) are even more appealing

when the temperature is warm, and precipitation reduces willingness to pay. I use these Column 1 estimates

to calculate the congestion instrument for subsequent regressions.

Column 2 instruments for congestion. The estimated coefficient on congestion indicates that an increase of

100 visitors per day, 12 percent relative to the mean, decreases willingness to pay by about $12. This impact

is roughly equivalent to having four additional precipitation days, and it is one fifth the willingness to pay

for warm weather at parks with water resources. The Anderson-Rubin 95 percent confidence interval, which

is robust to weak instruments, indicates that the congestion coefficient estimate is statistically significant at

the five percent level. To evaluate the relevance criteria, Appendix table A2 shows results from the first-stage

instrumental variables regression. The coefficient estimate for the instrument is positive, as expected, and

highly significant. Furthermore, the effective F-statistic from the first-stage regression is slightly greater

than 10, the common rule of thumb for identifying weak instruments.

Accounting for congestion impacts other coefficient estimates, especially those on time-varying attributes.

For example, failing to control for congestion leads me to underestimate the benefits of warm weather at

parks with water resources, because the benefits of warm weather are partially negated by increased crowding.

Controlling for the congestion disamenity, therefore, increases the estimate of willingness to pay for warm

weather at parks with water resources.

Column 3 adds attributes describing park infrastructure, wildlife, and administrative details. Focusing

on the infrastructure variables, visitors are willing to pay slightly more to visit parks with more roads and

trails, but much less to visit a park that requires a ferry or sea plane to access. Coefficient estimates on

wildlife attributes reveal that visitors prefer parks with bison, elk, and redwoods or sequoia trees, but prefer
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not to visit parks with grizzly or black bears.

Coefficient estimates for administrative attributes are less intuitive. First, consider preferences for sites

with the official “National Park” designation. My estimates suggest that elevating a park from another

designation to an official National Park designation actually decreases willingness to pay. This counterin-

tuitive result conflicts with common wisdom and results from Szabó and Ujhelyi (2024), who show that

redesignating parks as National Parks increases visitation. My finding can be partially explained by the fact

that I observe only three redesignations in the 2005 to 2019 analysis period—Pinnacles, Gateway Arch, and

Indiana Dunes. Szabó and Ujhelyi analyze a broader set of fourteen redesignations between 1970 and 2017.

Adding this context, my results suggest that redesignations may have heterogeneous impacts and are likely

not an all-powerful tool for increasing visitation.

Column 3 also includes an entrance fee indicator and an entrance fee size variable. I find that instituting

an entrance fee decreases willingness to pay by about $7, on average. The entrance fee size coefficient

estimate, while not statistically significant, is actually positive. This result is counterintuitive, as one would

expect that increasing an entrance fee would decrease willingness to pay, all else equal. Two factors help to

explain this positive coefficient estimate. First, many visitors purchase annual or lifetime system-wide passes

that exempt them from paying park-specific entrance fees. For these visitors, park entrance fee changes do

not impact the cost of entry, which pushes the entrance fee size coefficient towards zero. Second, national

parks may use entrance fees as a management tool to reduce congestion and recoup costs associated with

additional visitation. This behavior could lead to correlation between entrance fees and unobservable park

attributes, resembling price endogeneity in an industrial organization setting. Thus, changes in unobservable

attributes that increase visitation, induce fee increases, and are not captured by the month-of-sample fixed

effects will bias the entrance fee size coefficient upward.

All four park attribute regression models include 5◦F temperature bin indicator variables. Figure 2 plots

the temperature bin coefficients for models 1 and 2. Both models identify preferences for temperature using

within park-and-season-of-year variation. For example, the model explains variation in Yellowstone’s June,

July, and August park effects using variation in temperature during the same months of the year, after

controlling for month-of-sample fixed effects and observed time-varying attributes. Exploiting within-park-

season variation controls for omitted attributes constant within a park-season—e.g., some parks close their

roads all winter. Omitted attributes that vary within a season and are correlated with temperature still pose

threats to identification.

Visiting a park provides the most surplus at temperatures between 65◦F and 80◦F. Willingness to pay

decreases sharply as temperatures become colder. Relative to the ideal temperature of 70◦F, visiting when

the temperature is 30◦F reduces willingness to pay by nearly $400. Hot temperatures deter visitors less
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dramatically. Visiting when the temperature is 95◦F reduces willingness to pay by around $120. Failing to

control for congestion underestimates willingness to pay by 34 percent, on average. Once again, the direction

of this bias is expected, because the disutility caused by cold or heat is partially offset by the appeal of lower

congestion levels.

Before proceeding, note that park attribute coefficients have a limited impact on my valuation results.

Only one park attribute coefficient, the congestion coefficient, influences the individual park surplus results,

and none affect the joint surplus values. While it is possible that bias affecting the entrance fee size or

National Park designation estimates spills over to the congestion coefficient, such bias appears minor given

the stability of the congestion coefficient across models.

6.4 Valuing individual parks

Given the preference parameter estimates, I now calculate the recreational surplus produced by individual

parks. Table 5 shows the ten parks that generated the most recreational surplus in 2018. I provide two

recreational surplus estimates for each park. The preferred estimate accounts for congestion by solving for

new equilibrium congestion levels after a park has been removed from the choice set. The second estimate

ignores the impact of congestion spillovers by holding congestion levels fixed at the initial equilibrium.

Thus, the difference between the “Accounting for congestion” column and the “Ignoring congestion” column

reveals the portion of a park’s recreational surplus that comes from decreasing congestion at other parks

in the system. For example, Great Smoky Mountains generates $489 million of recreation surplus and $79

million of this total comes from decreasing congestion at other parks. Across the sample of parks, accounting

for congestion spillovers increases surplus estimates by 17 to 44 percent.

This total surplus ranking differs from the awesomeness rankings for two reasons. First, I sum surplus

across all months in the year, rather than examining surplus at each month separately. Second, the total

surplus a park generates depends on its travel costs, whereas the awesomeness index controls for travel

costs. All else equal, a park with low travel costs generates more surplus than a park with high travel

costs. These two factors—annual aggregation and location—help explain the recreational surplus results in

table 5. Golden Gate RA is conveniently located for Bay Area residents, and its climate remains favorable

throughout the year. These features, along with Golden Gate’s high awesomeness ranking, help to explain

why it provides three times more surplus than the next most valuable park. Gateway RA, Great Smoky

Mountains, and Delaware River Water Gap RA are also conveniently located, and they rank among the most

valuable parks even though they do not appear in the awesomeness top 10. On the other hand, Yellowstone

and Glacier, two parks with high travel costs and limited peak seasons, generate the 15th and 30th most
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annual surplus, despite ranking 2nd and 3rd in the July awesomeness ranking.

These park surplus values are typically much larger than park budgets. A park’s recreational surplus

exceeds its budget at all but three parks in my sample.10 On average, parks generate $80 million of recre-

ational surplus annually, almost fifteen times the average budget of $5.4 million. Arches has one of the

highest surplus-to-budget ratios, generating $143 million of surplus with a $2 million budget. While simply

comparing a park’s recreational surplus to its budget should not be conflated with a comprehensive benefit-

cost analysis, it is clear that the vast majority of parks provide recreational benefits far greater than their

operating costs.

To gauge the plausibility of my surplus estimates, I compare my estimates for June 2005 to Parsons et al.’s

(2021) surplus estimates for national parks in the Southwest in June 2002.11 This comparison suggests that

my estimates are relatively conservative. The largest discrepancies between our estimates come at Grand

Canyon and Zion. I estimate the surplus generated by Grand Canyon in June 2005 to be $19 million versus

their $52–$73 million and by Zion to be $7 million versus their $28–$41 million. These large differences are

likely driven by non-primary purpose trips. In the summer, only 20 percent of Grand Canyon’s visits and

17 percent of Zion’s visits are primary purpose trips. These are among the lowest primary purpose trip

rates of any park; the average primary purpose trip rate is 54 percent. Recall that I drop primary purpose

trips, following standard practice in the recreation demand literature, essentially assigning them zero value.

Parsons et al. account for non-primary purpose trips by allowing visitors to select multiple sites using an

innovative portfolio model. Unfortunately, estimating a model like theirs is not feasible in my setting, as it

requires observing every park a person visits on their trip. My estimates are more similar for parks with

higher shares of primary purpose trips, including Bryce Canyon ($8 million versus their $10–$15 million),

Canyonlands ($2 million versus their $3–$4 million), Mesa Verde ($3 million versus their $6–$8 million), and

Petrified Forest ($5 million versus their $5–$8 million). These smaller differences could also be explained by

differences in Parsons et al.’s and my travel cost calculations. Unlike my travel costs, Parsons et al.’s include

lodging, food, and time costs incurred while at the park, in addition to the costs of traveling to the park.

6.5 Valuing the National Park System

Finally, I estimate the joint recreational surplus generated by all 140 parks in my sample. These parks

produced $150 billion of surplus between 2005 and 2019, roughly $10 billion per year, with a maximum

of $11.7 billion in 2019. The magnitude of these annual surplus estimates is similar to other economic

10Several parks share budgets—e.g., Sequoia and King’s Canyon. For these parks, I sum the surplus of all parks in the budget
group and compare it to the total budget for the group. Surplus exceeds the budget at 133 of the 136 budget groups.

11I take estimates from Table 15 of Parsons et al. and multiply by 1.4 to convert 2002 dollars to 2018 dollars. This conversion
allows for a direct comparison to my estimates, which are measured in 2018 dollars.
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impacts monitored by the NPS. For 2019, the NPS estimates that visitors spent $13 billion in communities

surrounding the parks in my sample. This spending supported $6 billion in labor income, added $10 billion

to GDP, and supported $16 billion of total economic output (Cullinane Thomas & Koontz, 2020).12 Adding

recreational surplus to these other metrics increases estimated economic contributions by 26 percent.

Figure 3a tracks recreational surplus over time and reveals that annual surplus grew $2.8 billion, or 31

percent, between 2005 and 2019. Surplus grew slowly until 2013 but has surged since, increasing $2.3 billion

between 2013 and 2019. Figure 3b shows which variables contribute to this increase in surplus. I focus on

three sets of variables: (1) weather variables (temperature, precipitation, and the temperature-water resource

interaction), (2) unobserved park attributes captured by the month-of-sample fixed effects and residuals from

the park attribute regression, and (3) demographics and travel costs. For each set of variables individually,

I predict the welfare change that would have occurred if the variables were held fixed at 2005 levels. The

difference between the observed welfare and the welfare when the variables are fixed reveals how much

changes in those variables contribute to the observed change in surplus. Figure 3b plots these differences. It

shows that unobserved park attributes drive most of the increase in surplus. Allowing unobserved attributes

to vary, rather than holding them fixed, increases surplus by over $1.5 billion in 2019. Mirroring the abrupt

increase in total surplus from figure 3a, unobserved attributes become much more appealing starting in 2013.

This timing corresponds with the rise of social media, which Wichman (2024) connects to increased park

visitation, as well as the NPS Centennial (2016) and the “Find your Park” marketing campaign (2015-2016).

Changes in demographics and travel costs also contribute to the increase in surplus. Fixing these variables

would reduce the increase in surplus by about $750 million. The importance of demographics and travel

costs could be driven by rising incomes, population growth, or westward migration, which brings more people

closer to the most awesome parks. Weather conditions contribute little to the increase in surplus. Yet, given

the relatively strong preferences for temperature and the growing impact of climate change, it is possible

that weather conditions will impact recreational surplus more meaningfully in the future.

6.6 Sensitivity checks

I execute several checks to gauge the sensitivity of the joint surplus estimate. The first set of sensitivity

checks alter the opportunity cost of time assumption used to calculate travel costs. While my main results

make a commonly-used assumption that the opportunity cost of travel time is one third of an individual’s

wage rate, recent work suggests the opportunity cost of travel time could be larger (Fezzi et al., 2014).

Assuming the opportunity cost of time is one half the wage rate, I estimate the joint surplus generated

12Cullinane Thomas and Koontz’s Appendix A provides economic contributions by park, which allows me to calculate the
economic contributions from parks in my sample.
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by the 140 parks in my sample at $14 billion in 2019, a 21 percent increase relative to my main estimate.

Lloyd-Smith et al. (2019) find that the average opportunity cost of travel time is even greater, around 90

percent of an individual’s wage rate. Under this assumption, I estimate joint surplus at $20.6 billion. Thus,

my opportunity cost of travel time assumption yields conservative estimates relative to these alternatives.

The second set of sensitivity checks adopt different visitor count adjustments. Recall that my main

results depend on a visitor count adjustment that converts the raw counts to estimates of primary purpose

trips using park-specific re-entry rates and primary purpose trip rates from on-site survey data. As an

alternative, I use a “simple visitor count adjustment” that adjusts all park visitor counts using the same

re-entry and primary purpose trip rates—the average re-entry and primary purpose trip rates across all the

on-site surveys. This simple adjustment decreases my joint surplus estimate by 16 percent. I also estimate

surplus without adjusting the visitor counts. This check is unrealistic, because it treats all park entries as

primary purpose home-to-park trips. However, it does help to bound my estimates and gauge the impact

of the visitor count adjustment. Using the raw visitor counts produces a 2019 joint surplus estimate of $36

billion, 210 percent larger than my main estimate.

The final sensitivity check estimates the model using the 2008 survey and the visitor counts but not

the 2018 survey. This check serves two purposes. First, it speaks to how measurement error in the travel

cost variable might impact my estimates. Recall that I observe home locations less precisely in the 2018

survey. Second, it indicates whether changes in preferences over time might influence my estimates. These

two factors have little combined impact on my joint surplus estimate. Estimating the model without the

2018 survey increases the joint surplus estimate by just 1.4 percent.

7 Conclusion

This paper values the recreational surplus generated by 140 national parks between 2005 and 2019. Jointly,

these parks provide $10 billion of recreational surplus per year. Annual surplus grew 31 percent over the

analysis period and peaked at almost $12 billion in 2019, more than four times the National Park Service’s

2019 operating budget. In producing these valuation estimates, I also recover preferences for parks and their

attributes. My model controls for travel costs to produce a national park awesomeness index and reveals

that visitors tend to prefer parks with coastline and large waterbodies, wide-ranging elevation, bison, elk,

redwood forests, favorable temperatures, and lower congestion.

These findings address a longstanding gap in the documented benefits of the U.S. National Park System.

The National Park Service’s current efforts to value the parks’ economic contributions focus on visitor

spending and local economic impacts. Attempts to value visitors’ recreational surplus have focused on smaller
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sets of parks or specific points in time. By combining survey data with the National Park Service’s monthly

visitor counts, I create a unified framework to value recreational surplus across the system and across time.

My analysis highlights that U.S. national parks provide substantial non-market benefits and underscores

the National Park Service’s continued success in preserving the country’s most treasured resources for the

enjoyment of present and future generations.
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Table 1: Survey Respondent Demographics

Variable Unweighted Weighted 2010 ACS

Age
18-29 11.8 21.3 20.4
30-39 13.5 16.3 17.4
40-49 16.7 16.7 18.9
50-59 24.1 20.8 18.1
60-69 18.5 14.3 12.8
70+ 15.1 10.4 12.1

Household income
Less than $10,000 4.5 6.0 5.5
$10,000 to $25,000 9.5 11.0 13.7
$25,000 to $50,000 20.3 23.2 23.9
$50,000 to $75,000 20.8 22.2 19.2
$75,000 to $100,000 17.3 15.9 13.6
$100,000 to $150,000 15.4 13.1 13.9
Greater than $150,000 12.0 8.3 9.9

Other socioeconomic variables
College graduate 50.8 37.3 26.2
Has child 29.7 35.3 38.8
White, non-Hispanic 74.3 67.5 67.1
Black 8.5 10.8 11.6
Hispanic 7.3 13.3 14.1

NPS region of residence
Alaska 14.1 0.2 0.2
DC only 11.6 0.2 0.2
Intermountain 14.9 14.9 14.6
Midwest 14.6 22.9 22.5
Northeast 15.1 22.9 23.7
Pacific 14.8 16.8 17.1
Southeast 14.7 21.8 21.4

Visitation statistics
Visited in past 2 years 67.9 61.7
Avg number of visits 9.2 4.7
Flew (Subsample N = 1,537) 13.5 12.6

Sample size 6,762 6,762

Note: The table shows the share of respondents in various demographic
groups for the pooled 2008-2009 and 2018 Comprehensive Survey of the
American Public (CSAP) survey and the 2010 American Community Sur-
vey (ACS). Weights are included in the survey and match survey statistics
to Census averages. Thus, the weighted variable means align closely with
Census means.
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Table 2: Step 1 maximum likelihood estimates

Variable Estimate Std. Error

Fly -0.275 0.0041
Travel cost ($100) -0.171 0.0006

Interacted with outside option
$10k < income < $25k 0.065 0.0501
$25k < income < $50k -0.311 0.0340
$50k < income < $75k -0.465 0.0314
$75k < income < $100k -0.543 0.0325
$100k < income < $150k -0.758 0.0290
Income > $150k -0.768 0.0306
Has kid(s) 0.048 0.0173
Senior 0.495 0.0371
White, non-Hispanic -0.180 0.0273
Black, non-Hispanic 0.363 0.0336
Hispanic 0.072 0.0324
College graduate -0.304 0.0108

Dissimilarity coefficient 0.346 0.0002

Note: The table reports estimates from the step 1 maxi-
mum likelihood estimation. For socioeconomic variables
interacted with the outside option, positive estimates in-
dicate that the group is more likely to select the outside
option and less likely to visit a national park—e.g., con-
ditional on travel costs and other demographics, seniors
are more likely to select the outside option than other
age groups. The Hispanic category contains Hispanic
respondents of any race. “Other race, non-Hispanic” is
the omitted race and ethnicity category.
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Table 3: Park Awesomeness Index – Top 10

March July October

Golden Gate RA 98.8 Golden Gate RA 96.2 Golden Gate RA 95.3
Lake Mead RA 90.6 Yellowstone 95.1 Grand Canyon 86.6
Grand Canyon 90.1 Glacier 94.8 Yosemite 86.4
Joshua Tree 87.6 Mount Rainier 94.7 Lake Mead RA 85.6
Arches 85.4 Lake Roosevelt RA 94.2 Mount Rainier 84.9
Gulf Islands SS 84.7 Olympic 92.2 Olympic 84.9
Yosemite 84.4 Glen Canyon RA 90.7 Bryce Canyon 84.2
Zion 84.4 Rocky Mountain 90.5 Acadia 83.9
Point Reyes SS 83.8 Acadia 89.3 Yellowstone 83.7
Saguaro 83.8 Lake Mead RA 89.0 Glen Canyon RA 83.6

Note: The table shows the top 10 most awesome parks for March, July, and October of 2018. The park
rating rescales the raw park effects on a 100-point scale where the maximum park effect from January 2005
to December 2019 scores 100 and the minimum park effect scores 0.
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Table 4: Preferences for park attributes

(1) (2) (3) (4)

Variable Estimate WTP Estimate WTP Estimate WTP Estimate WTP

Visits per day (100s) -0.020 -11.6 -0.020 -11.7 -0.020 -11.7

(0.008) (0.008) (0.008)

[-0.0494, -0.0073] [-0.0502, -0.0073] [-0.0515, -0.0061]

Size Q2 0.343 201.0 0.300 175.5 0.331 194.2

(0.124) (0.170) (0.147)

Size Q3 0.442 258.9 0.469 274.6 0.524 307.1

(0.123) (0.164) (0.187)

Size Q4 0.650 380.8 0.614 359.5 0.415 243.3

(0.136) (0.191) (0.197)

Elevation range Q2 0.173 101.4 0.129 75.7 0.102 59.9

(0.138) (0.173) (0.163)

Elevation range Q3 0.266 156.0 0.324 189.9 0.201 117.5

(0.127) (0.182) (0.167)

Elevation range Q4 0.349 204.2 0.381 223.2 0.061 35.8

(0.127) (0.169) (0.190)

Coastal 0.310 181.4 0.481 282.0 0.406 238.1

(0.147) (0.274) (0.241)

Large lake or reservoir 0.281 164.7 0.318 186.5 0.245 143.8

(0.104) (0.157) (0.171)

Water x warm (> 70F) 0.048 27.9 0.107 62.8 0.109 63.6 0.109 63.6

(0.024) (0.038) (0.039) (0.039)

Precipitation days -0.003 -1.9 -0.005 -2.8 -0.005 -2.8 -0.005 -2.8

(0.001) (0.002) (0.002) (0.002)

Road miles (10 miles) 0.002 1.0

(0.002)

Trail miles (10 miles) 0.002 1.3

(0.004)

Requires ferry -0.768 -450.0

(0.355)

Bison 0.101 59.0

(0.215)

Elk 0.082 48.0

(0.113)

Bears -0.250 -146.5

(0.125)

Redwoods or sequoias 0.904 529.7

(0.407)

National Park designation -0.077 -45.0 -0.077 -45.0

(0.022) (0.022)

Charges fee -0.012 -7.1 -0.012 -7.1

(0.028) (0.028)

Charges fee x fee 0.005 2.8 0.005 2.8

(0.003) (0.003)

Mean visits per day (100s) 0.014 8.5 0.019 11.4

(0.010) (0.010)

Mean water x warm -0.117 -68.3 -0.218 -127.5 -0.166 -97.3

(0.095) (0.183) (0.147)

Mean precipitation days -0.007 -4.1 -0.012 -7.2 0.007 4.2

(0.012) (0.021) (0.017)

Mean NP designation 0.009 5.1

(0.184)

Mean charges fee 0.017 10.2

(0.173)

Mean charges fee x fee 0.027 16.0

(0.013)

Observations 24,970 24,970 24,970 24,970

Effective F-stat 12.0 12.1 10.0

Month of sample FE Yes Yes Yes Yes

Park-by-season-of-year FE Yes

Temperature Controls Yes Yes Yes Yes

Note: The table presents estimates from a regression of park effects on park attributes. Standard errors clustered at the park-level are in

parentheses. Columns 2, 3, and 4 instrument for congestion and report the Olea and Pflueger (2013) effective F-statistic and Anderson-

Rubin 95% confidence intervals in brackets. Comparing columns 3 and 4 confirms that the correlated random effects model yields identical

estimates to a model with park-by-season fixed effects. WTP is calculated by dividing each coefficient estimate by the travel cost coefficient

from table 2 and rescaling to dollars. Table A1 contains variable definitions and descriptive statistics for the park attributes.
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Table 5: Total surplus generated by the most valuable parks of 2018 (Millions of 2018$)

Park Accounting for congestion Ignoring congestion

Golden Gate RA 1,709.6 1,405.9
Gateway RA 491.7 419.1
Great Smoky Mtns 489.1 410.1
Lake Mead RA 467.1 352.8
Delaware River Water Gap RA 406.8 341.7
Grand Canyon 332.5 250.1
Gulf Islands SS 287.5 238.8
Yosemite 264.7 188.1
Rocky Mountain 258.6 204.5
Mount Rainier 213.0 160.6

Note: The table shows the ten parks that generated the most total recreational sur-
plus in 2018. The main estimates account for congestion by finding a new congestion
equilibrium after a park is removed from the choice set. The “ignoring congestion”
column removes parks from the choice set but assumes congestion remains unchanged
at substitute sites.
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Table 6: Joint recreational surplus sensitivity checks

Sensitivity check Surplus (billion) Percent difference

Main result $11.7
Opportunity cost of time = 50% wage rate $14.2 20.8%
Opportunity cost of time = 90% wage rate $20.6 75.9%
No visitor count adjustment $36.3 209.6%
Simple visitor count adjustment $ 9.9 -15.8%
Drop 2018 survey $11.9 1.4%

Note: The table shows the joint recreational surplus generated by the 140 parks in
my sample during 2019 under alternative assumptions. The main results assumes the
opportunity cost of time is one third a respondent’s wage rate and adjusts the visitor
count data using park-specific data and predictions for primary purpose trip rates and
re-entry rates. The “Simple visitor count adjustment” assumption adjusts each park’s
visitor counts using the average primary purpose trip rate and re-entry rate across all
parks. The “Percent difference” column shows the difference between the sensitivity
check estimate and the main estimate.
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Figure 1: Park effects vary month-to-month
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Note: The figure plots the park effects for Great Smoky Mountains NP (solid) and Glacier NP (dashed) in 2018.
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Figure 2: Cold decreases WTP more than heat
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Note: The figure plots coefficient estimates for each 5◦F temperature bin. Light blue circles represent point estimates
from model 1 of table 4, which omits congestion. Dark blue triangles circles represent point estimates from model 2 of
table 4, which is identical except that it instruments for congestion. Vertical lines indicate 95% confidence intervals.
The y-axis converts point estimates into willingness to pay terms by dividing by the travel cost coefficient.
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Figure 3: Recreational surplus produced by the National Park System

(a) Surplus increased 31 percent between 2005 and 2019
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(b) Unobserved attributes drive the increase in surplus
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Note: Panel (a) shows the annual recreational surplus generated by the 140 national parks in my sample, roughly all
national parks protected for their natural significance. Panel (b) plots the difference between the observed increase
in surplus and the change in surplus that would have occurred if a set of variables were held fixed at 2005 levels.
For example, in 2019, welfare given observed demographics and travel costs is about $750 million larger than welfare
given 2005 demographics and travel costs.
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A Supplementary Tables and Figures

Table A1: Descriptive statistics for park attributes

Variable Description Mean SD Min Max

Elevation range (ft) Elevation range (ft) 2,569.1 2,926.9 10.5 13,606.4

Road miles Miles of road 155.8 279.1 0.0 2,106.0
Trail miles Miles of hiking trails 107.1 191.9 0.0 1,133.2

Coastal Coastal – Atlantic, Pacific, Gulf, or
Great Lakes

0.21 0.41 0.0 1.0

Large lake or reservoir Contains inland lake or reservoir

larger than 40 acres (and not coastal)

0.26 0.44 0.0 1.0

Requires ferry Requires ferry or seaplane to access 0.04 0.20 0.0 1.0

Bison Bison present 0.06 0.23 0.0 1.0

Elk Elk present 0.25 0.43 0.0 1.0
Bears Grizzly or black bears present 0.35 0.48 0.0 1.0

Redwoods or sequoias Contains redwoods or giant sequoias 0.05 0.22 0.0 1.0

Visits per day Visits per day 3,003.4 6,036.8 0.0 52,036.5
Average daily high temperature (F) Average daily high temperature (F) 66.6 18.7 7.6 121.3

Precipitation days Number of days with precipitation 4.6 3.8 0.0 28.0

Park size (thousands of acres) Park acreage (thousands) 204.6 444.8 0.1 3,408.4
National Park designation Officially designated as a National

Park

0.34 0.47 0.0 1.0

Water x warm (> 70F) Coastal or contains reservoir/lake and

average daily high temperature > 70F

0.16 0.36 0.0 1.0

Charges fee Charges entrance fee 0.50 0.50 0.0 1.0
Charges fee x fee ($) Entrance fee (conditional on charging

fee)

12.8 8.4 3.0 35.0

Table A1 presents descriptive statistics for the park attributes included in the park attribute regressions.

Elevation range varies substantially across parks. Dry Tortugas National Park has an elevation range of only

10 feet, while Mount Rainier National Park has an elevation range of over 13,000 feet. The park attribute

regressions include each park’s elevation range quartile. Shenandoah National Park has the largest elevation

range in the third quartile (3,476 feet). Devil’s Tower National Monument has the largest elevation range in

the second quartile (1,277 feet), and Missouri National Recreational River has the largest elevation range in

the first quartile (471 feet). Several attributes are very uncommon, which makes identifying preferences for

these attributes challenging. Only six of the 140 parks in the sample require a ferry or seaplane to access

(Apostle Islands National Lakeshore, Channel Islands National Park, Cumberland Island National Seashore,

Dry Tortugas National Park, Gulf Island National Seashore, and Isle Royale National Park). Seven parks

in the sample contain redwoods or giant sequoias (Golden Gate National Recreation Area, Kings Canyon

National Park, Muir Woods National Monument, Point Reyes National Seashore, Redwood National Park,

Sequoia National Park, and Yosemite National Park), and eight parks contain bison (Badlands National Park,

Chickasaw National Recreation Area, Grand Canyon National Park, Grand Teton National Park, Tallgrass

Prairie National Preserve, Theodore Roosevelt National Park, Wind Cave National Park, and Yellowstone

National Park).
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Table A2: Instrumental variables regression first stage estimates

Dependent Variable: Congestion (hundreds of visitors per day)
Model: (1) (2) (3)

Variables
Congestion IV 0.3237∗∗∗ (0.0933) 0.3224∗∗∗ (0.0926) 0.3224∗∗∗ (0.0925)
Size Q2 -2.486 (3.534) -0.8279 (2.674)
Size Q3 0.9140 (2.701) 3.427 (3.652)
Size Q4 -3.002 (3.675) -3.304 (3.360)
Elevation range Q2 -2.380 (2.390) -3.098 (2.483)
Elevation range Q3 2.627 (4.266) 0.3731 (4.057)
Elevation range Q4 1.475 (3.072) -1.924 (3.655)
Coastal 8.254 (8.558) 4.005 (6.840)
Contains large lake or reservoir 1.390 (3.658) -1.979 (3.542)
Contains water x warm (> 70F) 2.073∗∗∗ (0.6205) 2.105∗∗∗ (0.6292) 2.105∗∗∗ (0.6283)
Precipitation days -0.0591 (0.0495) -0.0564 (0.0494) -0.0564 (0.0493)
Road miles (10 miles) 0.0156 (0.0472)
Trail miles (10 miles) 0.0805 (0.1006)
Requires ferry -5.077 (5.629)
Bison 4.672 (3.912)
Elk -2.210 (2.697)
Bears -4.295 (3.446)
Redwoods or Sequoias 22.01 (14.85)
National Park designation -1.594∗∗∗ (0.4863) -1.594∗∗∗ (0.4856)
Charges fee -0.5399 (0.6037) -0.5399 (0.6029)
Charges fee x fee 0.1568∗∗∗ (0.0453) 0.1568∗∗∗ (0.0452)
Mean IV 0.5043∗∗ (0.1941) 0.5217∗∗∗ (0.1724)
Mean contains water x warm -4.440 (5.472) -3.362 (4.737)
Mean precipitation days -0.3519 (0.5824) -0.0996 (0.4434)
Mean NP designation -4.049 (4.516)
Mean charges fee -4.078 (3.385)
Mean charges fee x fee 0.4956∗∗ (0.2374)

Fixed-effects
Time Yes Yes Yes
Unit-season-of-the-year Yes

Fit statistics
Observations 24,970 24,970 24,970

Clustered (Unit) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: The table contains estimates from the instrumental variables first stage regression corre-
sponding to columns (2), (3), and (4) of table 4. All models include temperature controls and their
unit-by-season-of-the-year means.
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Figure A1: A more-detailed surplus change decomposition
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This figure decomposes the change in recreational surplus provided by the National Park System using a wider
variety of variables than figure 3b. The entry fee panel should be interpreted with caution. It suggests that the
rising entrance fees over the analysis period have increased the recreational surplus, but this result is driven by
my counterintuitive positive coefficient on entrance fee size. The “Quality of historic site alt.” panel has a slightly
complicated interpretation. Because I value only naturally significant parks, a higher quality historic site alternative
actually decreases the surplus provided by naturally significant parks. Thus, positive values in the “Quality of historic
site alt.” panel actually indicate that the mean utility provided by the outside option had decreased relative to 2005
levels.
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B Proving a unique congestion equilibrium exists

Proposition 1 If congestion negatively impacts utility, then for each choice occasion t, there exists a unique

vector of congestion levels, cong·t
∗ = (cong∗1t, ..., cong

∗
Jt) such that:

cong·t
∗ =

∑
i

∑
m∈M

Pijmt(cong·t
∗)

where Pijmt is defined as in Section 2. Thus, cong·t
∗ represents the unique congestion equilibrium.

B.1 Set up

For a class of RUMs, Bayer and Timmins (2005) prove that a unique equilibrium exists when congestion is a

disamenity. The proof presented below closely resembles theirs. However, my model differs from their class

of models in two ways. First, the utility provided by two alternatives—the outside option, j = 0, and the

historic site composite alternative, j = J + 1—does not depend on congestion levels. Thus, my definition of

equilibrium only specifies congestion levels at parks explicitly included in the choice set. Second, congestion

at one park influences the utility provided by two choice alternatives, because visitors can visit a park either

by driving or flying.

Before proceeding, define several functions. Define a function P̃ijmt(s·t) = Pijmt(cong·t) where s·t =

1
N cong·t. This function, P̃ijmt, writes the choice probabilities as functions of visitation shares, s·t, rather

than congestion levels. Define model-predicted congestion levels as gj(cong·t) =
∑

i Pij·t(cong·t) where

Pij·t =
∑

m∈M Pijmt and a vector equivalent describing model-predicted congestion at parks j ∈ {1, ..., J}

as g(cong·t). Define the difference in observed and model-predicted congestion as Ψ(congt) = congt −

g(congt). Finally, define Ψ(1) to be the matrix of partial derivatives of Ψ. For any j, Ψ
(1)
jj = 1− ∂gj

∂congj
and

for any j and k ̸= j, Ψ
(1)
jk = − ∂gj

∂congk
.

It is also helpful to note that the partial derivatives of choice probabilities with respect to congestion at

the same park j and at another park k are given by:

• ∂Pijm

∂cj
= α

λPijm[1 − (1 − λ)Pij·|trip − λPij·] where Pij·|trip denotes the probability that individual i

selects park j conditional on taking a trip

• ∂Pijm

∂ck
= −α

λPik·[λPijm + (1− λ)Pijm|trip]

B.2 Existence

The function defining model-predicted visitation shares, 1
N

∑
i

∑
m∈M P̃ijmt(s·t), is continuous and maps

from the closed and bounded interval [0, 1]J to itself. Therefore, Brouwer’s Fixed Point Theorem implies
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there exist visitation shares, s∗·t such that s∗·t =
1
N

∑
i

∑
m∈M P̃ijmt (s

∗
·t). Multiplying both sides by N and

substituting Pijmt for P̃ijmt, the existence of s∗·t implies the existence of cong·t
∗.

B.3 Uniqueness

There is a unique congestion equilibrium if the matrix of partial derivatives, Ψ(1), has a positive dominant

diagonal. Thus, it suffices to show that for any j, Ψ
(1)
jj >

∑
k ̸=j |Ψ

(1)
jk |.

Using the partial derivatives to expand Ψ
(1)
jj and Ψ

(1)
jk , it suffices to show:

1− α

λ

∑
i

Pij·[1− (1− λ)Pij·|trip − λPij·] >
∑

k ̸∈{0, j, J+1}

∑
i

| −α

λ
Pik·[λPij· + (1− λ)Pij·|trip] |

Note that we can remove the absolute value from the right-hand side, because α < 0 when congestion

decreases utility and the dissimilarity coefficient, λ, lies in the unit interval. This sign is intuitive, because

increased congestion at one park increases the probability of choosing the other parks.

Re-arranging terms, the right-hand side can be written as:

−α

λ

∑
i

[λPij· + (1− λ)Pij·|trip]
∑

k ̸∈{0, j, J+1}

Pik·

Using the fact that
∑

k ̸∈{0, j, J+1} Pik· ≤ 1− Pij· − (1− Pi,trip), it suffices to show that:

1− α

λ

∑
i

Pij·[1− (1− λ)Pij·|trip − λPij·] > −α

λ

∑
i

(Pi,trip − Pij·) [λPij· + (1− λ)Pij·|trip]

where Pi,trip denotes the probability that individual i takes a trip (i.e., selects j > 0).

Thus, Ψ has a positive dominant diagonal if ∀i, j:

Pij·[1− (1− λ)Pij·|trip − λPij·] ≥ (Pi,trip − Pij·) [λPij· + (1− λ)Pij·|trip]

This inequality simplifies to 1 ≥ Pi,trip. Thus, Ψ has a positive dominant diagonal and the congestion

equilibrium is unique.
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C Valuation Estimates
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Table C1: Monthly aggregate surplus estimates (millions of 2018 dollars)

Park Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Acadia 1.13 1.06 1.89 5.50 16.73 29.82 39.93 43.26 35.24 29.07 2.73 0.99
Agate Fossil Beds M 0.01 0.01 0.03 0.03 0.11 0.16 0.18 0.11 0.11 0.05 0.01 0.00
Alibates Flint Quarries M 0.02 0.02 0.06 0.05 0.05 0.04 0.03 0.04 0.04 0.04 0.02 0.01
Amistad RA 5.09 5.07 8.59 7.92 7.17 5.34 5.31 4.50 3.74 3.43 3.32 4.05
Apostle Islands LS 0.31 0.37 0.24 0.27 0.89 1.60 2.64 2.97 1.65 0.69 0.18 0.32
Arches 5.27 5.42 15.28 16.07 17.51 14.93 11.83 12.91 17.13 13.79 7.85 5.45
Assateague Island SS 3.65 3.88 5.12 8.89 12.21 17.86 25.28 24.71 13.25 7.94 4.71 2.64
Aztec Ruins M 0.16 0.15 0.29 0.34 0.32 0.37 0.34 0.26 0.29 0.27 0.19 0.16
Badlands 0.88 0.71 1.16 1.38 4.76 10.28 11.04 10.01 5.77 1.68 0.92 0.65
Bandelier M 0.59 0.59 1.54 1.39 1.38 0.94 0.90 0.87 1.02 1.27 0.67 0.20
Big Bend 2.81 3.30 5.44 3.19 2.04 1.00 0.80 0.77 1.06 1.79 2.66 2.93
Big Cypress Preserve 0.95 1.66 1.40 1.13 0.68 0.48 0.50 0.36 0.45 0.48 0.90 1.11
Big South Fork River and Recreation Area 3.18 5.03 6.37 6.12 6.67 7.03 5.90 3.76 5.02 6.07 3.36 4.23
Big Thicket Preserve 1.12 0.68 1.37 1.20 1.54 1.38 1.28 1.41 1.05 1.24 1.32 1.02
Bighorn Canyon RA 0.61 0.59 0.92 1.07 1.83 2.49 2.89 2.56 1.16 0.68 0.31 0.47
Biscayne 10.07 8.04 8.47 6.65 2.68 6.15 6.30 5.68 4.85 3.93 5.15 8.59
Black Canyon of Gunnison 0.66 0.41 0.56 0.79 2.83 2.15 1.92 2.20 2.39 1.14 1.26 0.26
Bluestone SR 0.00 0.01 0.01 0.01 0.02 0.31 0.35 0.29 0.22 0.20 0.01 0.01
Booker T Washington M 0.06 0.09 0.13 0.18 0.13 0.16 0.18 0.14 0.09 0.16 0.11 0.06
Bryce Canyon 3.97 3.85 8.58 14.53 22.82 23.70 20.79 23.09 28.23 17.47 6.23 4.46
Cabrillo M 7.98 7.39 7.79 6.55 5.20 5.11 5.15 4.83 3.99 4.34 5.09 2.63
Canaveral Seashore 10.60 17.31 10.18 13.64 15.17 10.49 9.75 8.01 5.14 4.16 5.04 5.01
Canyon de Chelly M 1.77 1.45 2.03 1.71 1.98 1.64 1.24 1.62 1.13 1.15 1.07 1.14
Canyonlands 0.85 1.16 4.99 6.11 6.33 4.42 2.94 3.59 4.99 4.30 2.08 0.85
Cape Cod SS 2.91 2.88 3.57 3.69 5.40 8.33 10.16 13.46 9.68 5.84 3.30 3.41
Cape Hatteras SS 4.84 5.66 12.11 11.15 13.80 18.75 16.65 17.51 12.08 10.02 7.59 5.28
Cape Lookout SS 0.54 0.46 0.98 1.24 1.70 2.25 3.66 3.17 1.96 1.88 2.46 0.07
Capitol Reef 1.62 1.89 6.68 9.57 11.62 7.83 6.16 6.45 10.33 9.51 3.18 1.49
Capulin Volcano M 0.16 0.13 0.53 0.20 0.40 0.64 0.68 0.51 0.45 0.34 0.25 0.11
Carlsbad Caverns 1.62 1.63 4.66 2.19 2.26 3.11 3.17 1.70 1.53 2.24 1.56 0.61
Casa Grande Ruins M 0.91 1.21 1.23 0.49 0.22 0.14 0.11 0.10 0.16 0.26 0.36 0.22
Cedar Breaks M 2.04 1.05 1.17 1.43 2.27 3.01 7.15 6.66 4.30 2.62 1.48 1.41
Channel Islands 1.56 2.18 2.45 2.73 2.07 2.06 2.17 1.96 1.67 1.49 1.37 1.19
Chattahoochee River RA 17.38 16.86 16.39 17.42 19.02 14.74 19.63 14.05 18.61 11.64 11.76 16.01
Chickasaw RA 6.19 6.72 8.30 8.02 14.50 19.24 19.48 18.89 12.37 5.58 4.43 4.89
Chiricahua M 0.61 0.81 1.10 0.65 0.28 0.16 0.13 0.14 0.20 0.34 0.40 0.20
City of Rocks R 0.06 0.03 0.14 0.37 2.08 1.82 1.44 1.51 1.42 1.41 0.58 0.55
Colorado M 1.80 1.46 2.16 1.66 2.39 1.79 1.66 1.85 2.50 1.89 1.49 1.57
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Table C1: Monthly aggregate surplus estimates (millions of 2018 dollars) (continued)

Park Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Congaree 1.38 1.79 2.86 1.65 2.33 1.21 0.86 1.16 0.60 1.03 1.27 1.48
Crater Lake 2.37 1.55 1.70 2.46 5.41 9.66 12.87 12.03 11.70 7.03 3.04 0.86
Craters of the Moon M 1.16 1.16 1.44 2.24 4.73 5.44 5.32 4.27 5.70 2.08 0.58 0.63
Cumberland Island SS 0.20 0.35 0.64 0.47 0.39 0.33 0.29 0.26 0.20 0.25 0.27 0.13
Curecanti RA 1.44 1.16 1.18 1.65 3.14 3.47 3.12 3.40 3.24 2.13 1.31 0.81
Cuyahoga Valley 8.27 7.45 8.41 10.86 16.40 13.56 15.60 13.93 11.19 12.30 9.02 8.59
Death Valley 7.51 11.01 12.76 10.00 9.63 5.75 6.23 8.93 7.89 9.63 7.82 8.74
Delaware River Water Gap RA 29.57 28.40 8.36 31.25 38.63 37.74 49.92 45.57 36.68 36.71 35.33 28.70
Devil’s Postpile M 0.00 0.00 0.00 0.00 0.00 1.27 2.87 2.41 2.64 0.93 0.00 0.00
Devils Tower M 0.20 0.17 0.53 0.85 2.83 6.01 6.44 5.92 3.84 1.19 0.37 0.21
Dinosaur M 1.59 0.83 1.74 2.58 5.50 6.94 6.78 6.06 4.60 2.35 1.13 0.82
Dry Tortugas 0.40 0.57 0.45 0.37 0.36 0.34 0.31 0.35 0.28 0.04 0.32 0.10
Effigy Mounds M 0.13 0.14 0.15 0.18 0.14 0.18 0.21 0.17 0.13 0.16 0.06 0.07
El Malpais M 0.59 0.60 1.08 1.00 1.03 0.80 0.77 0.69 0.77 0.74 0.55 0.37
El Morro M 0.23 0.23 0.38 0.48 0.47 0.36 0.32 0.41 0.27 0.25 0.23 0.16
Everglades 2.33 4.62 3.07 2.44 1.77 1.46 1.44 1.25 2.03 3.55 4.59 7.80
Fire Island SS 0.49 0.86 0.94 0.94 1.08 1.57 2.72 2.66 1.71 1.15 0.80 0.42
Florissant Fossil Beds M 0.22 0.19 0.31 0.27 0.51 0.83 0.82 0.80 0.70 0.35 0.05 0.02
Fossil Butte M 0.04 0.04 0.10 0.12 0.32 0.47 0.53 0.44 0.43 0.17 0.06 0.01
Gateway RA 38.71 31.59 36.05 40.03 44.83 52.69 47.92 50.45 41.33 35.77 37.32 35.03
Gauley River RA 0.04 0.14 0.26 0.16 0.29 0.52 0.37 0.36 1.70 0.76 0.17 0.09
George Washington Carver M 0.10 0.24 0.39 0.37 0.36 0.24 0.27 0.17 0.25 0.30 0.19 0.07
Gila Cliff Dwellings M 0.39 0.53 1.16 0.72 0.60 0.46 0.44 0.35 0.37 0.41 0.31 0.11
Glacier 0.73 0.61 0.96 1.09 6.96 18.74 28.05 22.90 15.96 3.46 0.87 0.94
Glen Canyon RA 7.74 3.68 10.97 17.85 21.98 38.71 29.86 25.16 19.59 15.99 9.75 5.13
Golden Gate RA 274.69 182.93 166.19 132.51 115.26 97.63 95.59 120.63 113.87 127.94 115.47 166.85
Grand Canyon 30.93 24.07 34.96 29.20 28.00 24.52 23.16 26.69 26.30 27.00 25.77 31.93
Grand Portage M 0.08 0.09 0.17 0.11 0.33 0.69 0.85 1.19 0.59 0.30 0.08 0.06
Grand Teton 2.68 1.89 1.85 1.57 6.54 11.68 11.81 12.75 12.22 5.05 1.34 1.88
Great Basin 0.19 0.23 1.45 0.62 0.92 1.24 1.49 1.09 2.18 0.72 0.18 0.21
Great Sand Dunes 0.45 0.53 1.91 1.16 2.95 2.99 2.46 2.72 2.25 1.47 0.68 0.40
Great Smoky Mtns 20.59 22.54 33.87 35.49 40.10 53.75 52.96 45.96 55.55 52.40 40.68 35.18
Guadalupe Mountains 0.71 1.05 0.89 1.31 0.95 0.81 0.48 0.64 0.61 0.98 1.23 0.48
Gulf Islands SS 21.31 26.97 35.59 26.27 34.63 28.34 26.45 24.88 20.93 10.44 10.46 21.18
Hagerman Fossil Beds M 0.08 0.08 0.13 0.10 0.13 0.13 0.10 0.09 0.10 0.07 0.06 0.04
Hot Springs 7.04 8.58 10.91 9.05 8.77 8.63 9.28 9.74 8.08 8.37 6.85 5.91
Hovenweep M 0.07 0.07 0.21 0.37 0.35 0.26 0.20 0.19 0.26 0.21 0.08 0.03
Indiana Dunes LS 6.65 6.12 10.34 7.01 9.54 14.18 21.92 11.28 9.65 7.74 3.45 2.33
Isle Royale 0.00 0.00 0.00 0.00 0.05 0.23 0.30 0.40 0.15 0.02 0.00 0.00
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Table C1: Monthly aggregate surplus estimates (millions of 2018 dollars) (continued)

Park Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jefferson National Expansion ML 3.44 3.85 8.72 6.42 7.01 9.26 24.42 9.69 6.38 5.77 4.53 3.42
Jewel Cave M 0.03 0.02 0.18 0.13 0.40 1.49 1.70 1.57 0.98 0.26 0.07 0.01
John Day Fossil Beds M 0.32 0.36 1.11 1.38 1.78 1.98 2.42 1.58 1.65 0.91 0.43 0.19
Joshua Tree 31.75 25.58 30.43 20.81 13.82 7.50 5.39 6.47 7.32 11.42 19.21 23.48
Kings Canyon 4.88 2.96 3.13 4.92 8.36 9.51 11.10 11.83 9.81 6.53 4.26 5.62
Lake Chelan RA 0.07 0.08 0.09 0.12 0.22 0.27 0.33 0.31 0.30 0.19 0.08 0.07
Lake Mead RA 42.12 39.85 53.03 47.43 42.11 44.43 34.86 33.21 32.41 32.14 32.85 32.63
Lake Meredith RA 4.62 7.74 5.50 6.17 7.03 7.18 7.86 5.12 2.79 2.40 3.05 2.82
Lake Roosevelt RA 8.11 7.24 7.54 7.98 12.91 17.70 30.41 22.72 11.36 4.59 2.63 2.88
Lassen Volcanic 1.92 1.06 0.91 1.95 2.75 5.35 7.03 6.60 6.12 4.00 1.03 1.08
Lava Beds M 0.46 0.47 0.43 0.65 0.80 1.47 1.47 1.12 0.91 0.62 0.46 0.22
Little River Canyon Preserve 0.73 0.87 1.77 1.85 2.50 4.14 3.11 2.67 1.77 1.64 0.80 0.72
Mammoth Cave 1.03 1.23 4.51 4.00 3.93 4.78 5.88 3.96 3.14 3.32 1.84 0.82
Mesa Verde 1.40 0.85 1.73 2.04 3.01 3.65 2.88 2.99 3.16 2.37 0.97 0.91
Mississippi River & RA 2.12 2.06 2.07 1.54 3.10 2.48 1.92 1.87 1.74 1.50 1.31 1.14
Missouri Recreational River 0.48 0.47 0.55 0.47 0.72 0.78 0.72 0.67 1.68 0.63 0.49 0.75
Mojave Preserve 6.03 5.37 4.74 5.87 4.53 3.47 2.40 2.59 4.08 4.34 6.51 6.14
Montezuma Castle M 2.63 2.98 5.06 4.10 2.92 1.95 1.58 1.36 1.94 2.36 2.21 0.98
Mount Rainier 6.13 3.89 5.12 4.33 14.73 28.73 42.76 44.04 27.35 15.92 14.33 5.70
Muir Woods M 7.37 4.71 6.34 5.69 5.18 5.24 5.63 5.36 4.35 3.89 2.62 6.54
Natural Bridges M 0.16 0.17 0.64 1.02 1.05 0.55 0.39 0.33 0.75 0.66 0.23 0.07
New River Gorge R 4.10 3.78 5.02 8.21 9.93 9.52 9.18 8.27 5.41 6.76 2.99 2.11
Niobrara SR 0.20 0.08 0.16 0.20 0.69 1.16 2.00 1.59 0.91 0.21 0.09 0.06
North Cascades 0.00 0.00 0.00 0.01 0.10 0.17 0.46 0.36 0.31 0.09 0.00 0.00
Obed Wild and Scenic River 0.92 0.89 1.39 1.03 1.14 1.04 0.95 1.10 0.75 0.79 0.96 1.12
Olympic 11.63 7.84 8.22 10.42 17.87 24.70 23.45 36.43 21.26 12.74 6.37 5.11
Oregon Caves Monument and Preserve 0.33 0.25 0.57 0.55 1.14 1.14 1.07 0.95 1.13 0.62 0.25 0.18
Organ Pipe Cactus M 3.38 3.41 4.03 1.45 1.44 1.06 0.90 0.53 0.89 1.16 1.54 1.78
Ozark Scenic River 1.74 1.80 4.20 4.99 6.81 10.78 14.04 13.76 8.48 4.45 4.22 2.27
Padre Island Seashore 3.00 5.61 4.34 4.37 4.79 4.02 4.80 4.14 1.70 1.86 1.57 1.85
Petrified Forest 2.71 2.66 4.94 4.11 5.34 6.70 4.50 3.86 3.57 3.32 2.13 2.14
Petroglyph M 1.51 1.49 2.07 2.01 1.23 1.06 0.90 0.91 0.97 1.69 1.34 1.02
Pictured Rocks LS 1.19 1.62 0.90 0.59 1.57 2.81 5.00 5.50 3.62 1.98 0.19 0.48
Pinnacles 3.83 3.70 3.67 3.56 3.05 3.04 1.29 1.71 1.63 1.82 2.42 3.12
Pipestone M 0.02 0.02 0.05 0.08 0.31 0.25 0.28 0.27 0.23 0.15 0.06 0.03
Point Reyes SS 15.95 16.15 14.74 15.26 13.49 12.87 12.11 16.38 8.24 8.76 10.92 13.40
Rainbow Bridge M 0.00 0.00 0.24 0.28 1.03 1.06 1.01 0.85 0.81 0.41 0.09 0.00
Redwood 2.28 1.46 1.91 2.34 3.18 3.78 3.28 2.91 2.81 1.97 1.42 1.83
Rio Grande Wild and Scenic River 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table C1: Monthly aggregate surplus estimates (millions of 2018 dollars) (continued)

Park Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Rocky Mountain 11.43 7.28 11.72 9.92 17.37 35.95 39.95 40.46 46.11 20.34 9.01 9.06
Ross Lake RA 0.47 0.55 0.60 0.65 5.87 6.92 10.24 5.85 7.04 6.76 1.12 0.45
Russell Cave M 0.06 0.10 0.15 0.16 0.09 0.14 0.09 0.06 0.11 0.11 0.08 0.04
Saguaro 11.32 12.95 13.91 8.21 4.50 2.73 2.74 2.94 2.73 4.00 6.93 5.48
Saint Croix SR 0.05 0.01 0.01 1.25 5.78 7.79 6.67 6.97 4.23 1.09 0.20 0.03
Salinas Pueblo Missions M 0.17 0.19 0.23 0.24 0.31 0.23 0.20 0.18 0.20 0.25 0.16 0.07
Santa Monica Mountains RA 6.46 7.29 6.73 5.89 5.76 3.84 3.16 3.85 4.14 4.56 2.07 3.39
Scotts Bluff M 0.11 0.17 0.52 0.47 0.92 1.11 1.21 1.01 0.98 0.42 0.14 0.32
Sequoia 9.87 8.07 10.38 10.72 14.84 15.86 17.55 18.92 15.29 10.11 7.96 11.14
Shenandoah 2.08 1.47 3.03 4.79 6.79 6.84 7.28 7.47 4.76 8.74 6.32 1.54
Sleeping Bear Dunes LS 1.24 1.22 1.78 1.69 6.34 15.60 25.81 24.92 8.60 5.87 1.18 1.02
Sunset Crater Volcano M 0.41 0.41 1.11 0.94 0.80 0.82 0.66 0.61 0.63 0.52 0.50 0.19
Tallgrass Prairie Preserve 0.03 0.04 0.15 0.15 0.26 0.23 0.19 0.17 0.23 0.18 0.10 0.03
Theodore Roosevelt 0.29 0.20 0.77 1.32 5.80 8.21 9.55 8.06 6.30 3.78 1.10 0.34
Timpanogos Cave M 0.06 0.07 0.32 0.37 0.65 1.93 1.89 1.73 0.63 0.36 0.09 0.08
Tonto M 0.46 0.59 0.77 0.34 0.17 0.11 0.09 0.08 0.12 0.17 0.29 0.13
Upper Delaware S & R River 0.31 0.28 0.21 0.36 1.23 1.32 2.09 2.42 1.59 0.36 0.31 0.20
Voyageurs 0.42 0.62 0.43 0.02 1.94 2.93 2.79 2.96 1.56 0.65 0.16 0.01
Whiskeytown- Shasta-Trinity RA 3.07 3.36 4.51 4.54 8.06 8.39 6.77 0.00 1.88 1.99 0.37 1.98
White Sands M 8.35 6.26 11.88 5.79 5.31 4.26 4.11 3.39 3.76 4.14 4.88 2.86
Wind Cave 1.00 1.19 1.77 2.49 2.63 5.82 5.78 6.01 3.96 1.58 0.89 0.76
Yellowstone 2.82 2.63 1.42 1.94 20.98 35.38 37.34 35.83 34.59 10.88 0.81 1.66
Yosemite 13.55 13.15 13.87 20.01 23.93 29.26 22.97 24.38 33.33 25.62 16.69 27.90
Zion 7.03 6.67 15.76 16.25 13.93 12.32 8.70 10.62 13.73 12.45 8.72 7.53

Note: The table shows the recreational surplus generated by each park and each month of 2018. All surplus estimates in this table account for congestion.
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Table C2: Recreational surplus per raw visitor count (2018 dollars)

Park Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Acadia 95 87 80 76 67 60 53 56 59 60 67 78
Agate Fossil Beds M 84 77 71 66 57 50 42 47 50 51 57 68
Alibates Flint Quarries M 83 76 71 65 56 49 41 45 49 50 56 67
Amistad RA 82 76 70 65 56 48 41 45 48 49 56 67
Apostle Islands LS 80 73 68 63 55 48 41 45 48 49 55 65
Arches 166 134 113 96 81 70 58 70 83 93 106 130
Assateague Island SS 94 87 80 75 67 60 52 56 58 59 67 78
Aztec Ruins M 88 80 74 68 58 51 43 47 51 52 58 71
Badlands 83 76 70 65 56 49 42 46 49 50 56 67
Bandelier M 86 79 73 67 58 50 42 47 50 51 58 69
Big Bend 84 77 72 66 57 49 41 46 49 50 57 68
Big Cypress Preserve 16 15 13 12 11 11 11 11 11 11 12 14
Big South Fork River and Recreation Area 127 113 100 89 82 76 70 70 70 67 80 100
Big Thicket Preserve 96 89 82 76 67 59 51 55 58 58 65 78
Bighorn Canyon RA 104 95 87 80 71 64 55 60 62 62 69 84
Biscayne 364 247 173 125 120 117 115 123 131 135 174 244
Black Canyon of Gunnison 87 79 73 67 58 51 43 47 51 52 58 70
Bluestone SR 79 73 67 63 55 48 41 45 48 49 55 65
Booker T Washington M 94 87 80 76 67 60 52 56 58 59 66 78
Bryce Canyon 123 104 90 78 67 58 48 59 69 77 85 101
Cabrillo M 115 104 95 86 74 65 56 61 64 66 75 92
Canaveral Seashore 95 88 81 75 67 59 52 55 58 58 66 78
Canyon de Chelly M 77 64 54 45 38 33 27 30 32 33 42 56
Canyonlands 89 81 75 69 59 52 43 48 52 53 59 72
Cape Cod SS 26 24 21 19 18 17 16 17 19 19 21 23
Cape Hatteras SS 79 74 68 64 55 48 41 45 48 50 56 66
Cape Lookout SS 79 74 68 63 55 48 41 45 48 50 56 66
Capitol Reef 104 90 79 70 60 52 44 53 62 69 75 88
Capulin Volcano M 101 92 85 79 69 62 54 58 60 60 68 81
Carlsbad Caverns 85 78 72 66 57 49 42 46 49 51 57 69
Casa Grande Ruins M 109 99 91 83 72 64 55 60 63 64 72 88
Cedar Breaks M 91 83 76 70 60 52 43 48 52 54 60 73
Channel Islands 97 88 80 73 62 53 44 49 53 56 63 78
Chattahoochee River RA 95 88 81 76 67 59 52 55 58 59 66 78
Chickasaw RA 117 105 95 85 83 82 81 84 86 85 91 103
Chiricahua M 112 98 87 77 68 60 52 61 69 76 83 96
City of Rocks R 158 128 107 89 81 74 67 75 81 85 100 124
Colorado M 126 97 77 61 52 45 38 45 52 57 70 93
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Table C2: Recreational surplus per raw visitor count (2018 dollars) (continued)

Park Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Congaree 192 160 135 116 103 92 82 94 106 116 131 157
Crater Lake 257 193 153 124 103 87 72 89 105 121 143 185
Craters of the Moon M 354 256 199 160 135 116 97 117 137 153 183 244
Cumberland Island SS 94 88 81 76 67 59 52 55 58 58 66 78
Curecanti RA 71 55 44 34 28 23 18 23 28 31 40 53
Cuyahoga Valley 94 87 80 75 67 59 52 56 58 59 66 78
Death Valley 93 85 78 71 61 52 44 49 53 55 62 75
Delaware River Water Gap RA 214 176 146 126 115 106 98 108 116 123 142 172
Devil’s Postpile M 72 59 73 86 98
Devils Tower M 101 92 85 79 70 62 54 58 61 61 68 82
Dinosaur M 281 221 181 150 135 124 111 124 135 142 167 212
Dry Tortugas 94 88 81 75 66 58 51 54 57 58 65 78
Effigy Mounds M 62 52 44 36 31 26 21 24 26 27 34 46
El Malpais M 87 80 74 68 58 50 42 47 51 52 58 70
El Morro M 88 80 74 68 59 51 43 47 51 52 59 71
Everglades 69 69 68 68 57 47 39 47 54 60 62 65
Fire Island SS 78 72 66 63 55 48 41 45 48 49 56 65
Florissant Fossil Beds M 101 92 85 79 69 62 54 58 61 61 68 81
Fossil Butte M 382 271 209 167 139 119 99 119 140 158 191 258
Gateway RA 77 72 65 62 54 47 40 44 47 49 55 64
Gauley River RA 79 73 67 63 55 48 41 45 48 49 55 65
George Washington Carver M 96 89 82 76 67 60 52 56 58 59 66 78
Gila Cliff Dwellings M 105 96 89 81 71 63 54 59 62 62 70 85
Glacier 60 51 44 38 36 34 31 34 37 38 42 50
Glen Canyon RA 94 75 60 49 46 44 41 46 50 52 61 76
Golden Gate RA 229 171 131 101 87 75 64 75 86 94 120 164
Grand Canyon 120 91 69 53 44 36 29 36 43 49 63 87
Grand Portage M 81 74 68 64 55 48 41 45 48 49 55 66
Grand Teton 49 40 32 26 22 19 15 18 22 24 30 39
Great Basin 110 100 92 84 74 65 56 61 64 65 73 89
Great Sand Dunes 126 94 72 55 46 39 31 38 45 51 66 90
Great Smoky Mtns 64 56 49 43 41 38 36 38 41 41 47 55
Guadalupe Mountains 85 78 72 66 57 49 42 46 49 51 57 69
Gulf Islands SS 96 89 82 76 67 59 52 55 58 59 66 79
Hagerman Fossil Beds M 159 106 74 52 40 30 21 29 37 46 65 100
Hot Springs 96 89 83 76 67 60 52 56 58 59 66 79
Hovenweep M 88 80 74 68 59 51 43 48 51 52 59 71
Indiana Dunes LS 94 87 80 75 66 59 52 55 58 58 65 77
Isle Royale 80 73 68 63 55 48 41 45 48 49 55 65
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Table C2: Recreational surplus per raw visitor count (2018 dollars) (continued)

Park Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jefferson National Expansion ML 86 74 64 55 49 44 38 40 41 41 50 65
Jewel Cave M 84 77 71 65 57 50 42 47 50 51 57 68
John Day Fossil Beds M 111 100 91 83 73 66 58 63 65 65 73 88
Joshua Tree 107 89 75 64 56 49 41 46 49 52 64 83
Kings Canyon 248 195 157 127 113 102 91 103 113 121 146 189
Lake Chelan RA 90 81 74 68 59 52 44 50 52 53 59 72
Lake Mead RA 92 83 76 70 60 52 43 48 52 54 61 74
Lake Meredith RA 83 76 71 65 56 49 41 45 49 50 56 67
Lake Roosevelt RA 149 134 122 111 107 106 102 101 95 87 98 118
Lassen Volcanic 187 147 117 92 80 71 61 72 81 88 109 142
Lava Beds M 116 104 95 86 75 67 58 63 66 67 75 92
Little River Canyon Preserve 79 74 68 63 55 48 41 44 48 49 55 65
Mammoth Cave 133 110 92 77 70 64 58 64 70 74 87 107
Mesa Verde 168 115 82 59 47 37 27 36 45 52 73 108
Mississippi River & RA 79 73 68 63 55 48 41 45 48 49 54 65
Missouri Recreational River 97 89 82 76 67 60 53 56 59 59 66 79
Mojave Preserve 107 92 80 70 60 52 43 53 61 69 76 90
Montezuma Castle M 109 99 91 83 73 64 55 60 63 64 72 88
Mount Rainier 256 207 173 147 138 131 122 135 143 147 166 202
Muir Woods M 100 90 82 74 63 54 45 51 55 57 65 80
Natural Bridges M 90 82 75 69 60 52 43 48 52 53 60 72
New River Gorge R 102 90 78 69 62 57 52 53 53 52 63 79
Niobrara SR 272 211 170 139 125 115 104 115 126 132 158 204
North Cascades 90 81 74 67 59 52 44 50 52 53 59
Obed Wild and Scenic River 79 73 68 63 55 48 41 45 48 49 55 65
Olympic 94 82 72 65 58 53 48 56 62 66 71 80
Oregon Caves Monument and Preserve 365 253 190 149 122 101 82 103 123 142 174 239
Organ Pipe Cactus M 110 100 92 84 73 64 55 60 63 64 73 89
Ozark Scenic River 96 89 82 76 67 60 52 56 59 59 66 79
Padre Island Seashore 97 90 83 77 68 60 52 55 58 58 66 79
Petrified Forest 107 98 90 83 72 64 55 60 63 63 71 87
Petroglyph M 86 79 73 67 58 50 42 47 50 51 58 69
Pictured Rocks LS 60 50 42 36 32 28 25 29 32 34 40 49
Pinnacles 241 197 164 137 123 112 101 113 123 132 152 190
Pipestone M 59 49 41 33 28 23 18 21 23 24 31 43
Point Reyes SS 100 91 82 75 63 54 45 51 55 58 65 80
Rainbow Bridge M 75 69 60 52 43 48 52 53 60 72
Redwood 97 87 79 72 62 54 45 51 54 56 63 77
Rio Grande Wild and Scenic River 84 77 71 66 49 46 49 50 56 68
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Table C2: Recreational surplus per raw visitor count (2018 dollars) (continued)

Park Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Rocky Mountain 103 86 75 65 57 50 43 51 59 65 72 85
Ross Lake RA 90 81 74 68 59 52 45 50 53 53 60 72
Russell Cave M 79 74 68 63 55 48 41 44 48 49 55 65
Saguaro 108 99 91 83 72 64 55 60 63 64 72 87
Saint Croix SR 79 73 68 63 55 48 41 45 48 49 54 65
Salinas Pueblo Missions M 103 94 87 80 70 62 54 58 61 61 69 83
Santa Monica Mountains RA 97 88 80 73 62 53 44 49 53 56 63 78
Scotts Bluff M 84 76 71 65 57 50 42 46 50 51 56 68
Sequoia 249 196 157 127 113 102 91 103 113 121 146 189
Shenandoah 87 76 65 57 51 46 41 42 43 43 53 67
Sleeping Bear Dunes LS 95 87 81 75 67 60 53 56 58 59 66 78
Sunset Crater Volcano M 109 99 91 83 73 64 55 60 63 64 72 87
Tallgrass Prairie Preserve 97 89 82 76 67 60 52 56 59 59 66 79
Theodore Roosevelt 100 91 84 78 69 62 54 58 61 60 67 81
Timpanogos Cave M 127 109 96 83 75 69 62 63 64 62 74 96
Tonto M 108 99 91 83 72 64 55 60 63 64 72 87
Upper Delaware S & R River 78 72 66 63 55 48 41 45 48 49 55 65
Voyageurs 97 89 82 76 67 60 53 56 59 59 66 79
Whiskeytown- Shasta-Trinity RA 118 107 97 88 77 67 58 66 68 77 94
White Sands M 251 178 132 100 84 72 61 71 82 91 119 168
Wind Cave 84 77 71 66 57 50 42 47 50 51 57 68
Yellowstone 97 77 62 51 47 44 40 44 48 50 59 74
Yosemite 105 92 81 72 62 54 46 55 64 71 77 90
Zion 65 52 42 34 28 23 17 23 29 33 40 51

Note: The table shows the recreational surplus per VUS visit for each park and each month of 2018. I calculate surplus per visit
by dividing the estimated aggregate recreational surplus by the Visitor Use Statistics (VUS) visitor count. These values may
be useful for administrative purposes, because VUS visitor counts are commonly cited by the National Park Service. However,
these estimates are not consistent with my model’s definition of a trip, because the VUS does not account for re-entry and non-
primary purpose visitation. Park-months missing an estimate received zero visits during that month.
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D Full park awesomeness index

Table D1: Park awesomeness ratings

Park Spring Summer Fall Winter

Golden Gate RA 99.2 (1) 97.3 (1) 95.3 (1) 98.8 (1)
Yellowstone 92.4 (2) 95.7 (2) 92.3 (2) 72.9 (29)
Glacier 86.8 (14) 94.8 (3) 88.9 (6) 66.0 (60)
Mount Rainier 88.6 (11) 94.7 (4) 89.5 (3) 76.2 (15)
Olympic 91.2 (4) 94.4 (5) 89.2 (4) 81.6 (6)
Lake Roosevelt RA 89.5 (9) 94.2 (6) 85.6 (13) 79.5 (8)
Glen Canyon RA 89.8 (8) 93.3 (7) 85.8 (12) 76.8 (13)
Lake Mead RA 91.8 (3) 91.5 (8) 86.4 (10) 85.1 (3)
Yosemite 90.0 (7) 91.1 (9) 88.9 (7) 83.4 (5)
Grand Canyon 91.0 (5) 90.0 (12) 87.3 (9) 85.2 (2)
Rocky Mountain 86.2 (18) 90.7 (10) 89.0 (5) 76.2 (16)
Bryce Canyon 90.1 (6) 90.2 (11) 88.2 (8) 72.6 (32)
Acadia 84.9 (21) 89.3 (13) 85.9 (11) 60.4 (82)
Arches 88.8 (10) 87.7 (16) 85.4 (14) 74.5 (23)
Grand Teton 84.5 (22) 88.1 (14) 85.1 (15) 72.0 (37)
Crater Lake 83.2 (28) 87.8 (15) 85.0 (16) 71.8 (38)
Joshua Tree 87.6 (12) 80.8 (44) 79.8 (27) 84.1 (4)
Great Smoky Mtns 85.4 (20) 87.0 (17) 83.8 (17) 75.8 (19)
Gulf Islands SS 86.8 (13) 85.3 (20) 79.8 (28) 78.4 (10)
Capitol Reef 86.6 (15) 84.0 (29) 82.7 (19) 68.4 (49)
Zion 86.6 (16) 85.1 (23) 82.6 (20) 75.2 (20)
Sequoia 86.3 (17) 86.5 (18) 83.3 (18) 78.1 (11)
Point Reyes SS 86.0 (19) 85.0 (24) 79.2 (31) 81.0 (7)
Ross Lake RA 83.1 (29) 85.9 (19) 81.2 (21) 61.2 (79)
Gateway RA 84.5 (23) 85.3 (21) 80.2 (23) 76.0 (17)
Theodore Roosevelt 83.0 (30) 85.2 (22) 80.2 (24) 57.1 (97)
Badlands 80.0 (44) 84.8 (25) 77.7 (34) 61.9 (77)
Sleeping Bear Dunes LS 76.9 (62) 84.6 (26) 75.1 (43) 59.3 (90)
Delaware River Water Gap RA 83.9 (25) 84.4 (27) 79.8 (26) 74.7 (22)
Whiskeytown- Shasta-Trinity RA 84.2 (24) 84.3 (28) 71.9 (65) 72.4 (33)
Saguaro 83.8 (26) 75.6 (73) 74.4 (49) 79.0 (9)
Death Valley 83.6 (27) 81.4 (41) 79.5 (29) 78.0 (12)
Cape Hatteras SS 81.9 (37) 83.6 (30) 77.3 (36) 69.0 (48)
Chickasaw RA 82.0 (36) 83.5 (31) 77.3 (35) 70.0 (44)
Dinosaur M 82.1 (35) 83.5 (32) 77.7 (33) 67.4 (52)
Kings Canyon 82.7 (32) 83.3 (33) 80.6 (22) 73.7 (25)
White Sands M 83.0 (31) 78.8 (52) 74.8 (45) 76.3 (14)
Craters of the Moon M 82.1 (34) 83.0 (34) 80.1 (25) 66.6 (56)
Canyonlands 82.4 (33) 80.1 (45) 77.8 (32) 64.9 (63)
Devils Tower M 77.7 (56) 82.4 (35) 76.3 (39) 53.9 (107)
Lassen Volcanic 77.5 (58) 82.4 (36) 79.4 (30) 69.5 (45)
Petrified Forest 80.3 (42) 81.6 (37) 74.5 (48) 69.5 (46)
Jefferson National Expansion ML 74.8 (77) 81.5 (38) 70.5 (74) 63.8 (66)
Wind Cave 76.6 (68) 81.5 (39) 75.8 (40) 64.3 (65)
Redwood 80.4 (41) 81.5 (40) 76.6 (38) 72.3 (34)
Amistad RA 81.2 (38) 78.7 (53) 73.0 (57) 71.7 (39)
Assateague Island SS 77.8 (55) 81.2 (42) 74.6 (47) 63.4 (69)
Cedar Breaks M 75.0 (76) 81.0 (43) 75.7 (41) 67.8 (50)
Chattahoochee River RA 80.7 (39) 79.8 (48) 76.8 (37) 72.9 (30)
Canaveral Seashore 80.4 (40) 77.9 (60) 69.9 (79) 74.4 (24)
Lake Meredith RA 80.1 (43) 80.1 (47) 70.8 (70) 73.7 (26)
Indiana Dunes LS 76.0 (72) 80.1 (46) 72.4 (64) 66.1 (58)
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Table D1: Park awesomeness ratings (continued)

Park Spring Summer Fall Winter

Mesa Verde 78.5 (49) 79.6 (49) 75.6 (42) 66.8 (54)
Muir Woods M 79.5 (45) 79.1 (51) 74.9 (44) 76.0 (18)
Cabrillo M 79.5 (46) 77.9 (59) 73.3 (55) 75.1 (21)
Ozark Scenic River 76.0 (73) 79.4 (50) 73.7 (53) 60.5 (81)
Big Bend 79.2 (47) 70.9 (94) 70.0 (78) 71.6 (40)
Cuyahoga Valley 78.9 (48) 77.5 (63) 72.7 (60) 67.0 (53)
Bighorn Canyon RA 76.7 (65) 78.6 (54) 70.6 (73) 62.6 (73)
Cape Cod SS 74.8 (78) 78.6 (55) 74.6 (46) 63.5 (68)
Hot Springs 78.4 (50) 78.1 (57) 74.2 (50) 71.1 (42)
Santa Monica Mountains RA 78.3 (51) 75.6 (74) 73.1 (56) 73.6 (27)
Saint Croix SR 76.6 (67) 78.3 (56) 71.0 (68) 39.2 (130)
Biscayne 78.2 (52) 77.5 (62) 72.4 (63) 73.5 (28)
Mojave Preserve 78.2 (53) 75.0 (76) 72.9 (59) 72.7 (31)
John Day Fossil Beds M 76.8 (63) 78.0 (58) 73.4 (54) 59.8 (86)
Padre Island Seashore 78.0 (54) 76.7 (65) 67.7 (89) 72.0 (35)
Curecanti RA 77.2 (59) 77.7 (61) 74.1 (51) 65.1 (62)
Montezuma Castle M 77.7 (57) 73.2 (84) 70.4 (75) 69.5 (47)
Black Canyon of Gunnison 77.2 (60) 75.4 (75) 72.9 (58) 61.0 (80)
Carlsbad Caverns 77.0 (61) 76.7 (64) 70.3 (76) 66.0 (59)
Pinnacles 76.7 (64) 75.8 (71) 68.9 (82) 72.0 (36)
City of Rocks R 76.7 (66) 75.8 (70) 71.2 (67) 59.8 (85)
Organ Pipe Cactus M 76.6 (69) 70.2 (96) 66.8 (94) 71.4 (41)
New River Gorge R 76.5 (70) 76.0 (69) 69.6 (80) 63.4 (70)
Great Sand Dunes 76.4 (71) 76.4 (66) 71.4 (66) 58.5 (95)
Devil’s Postpile M 76.2 (67) 73.7 (52)
Voyageurs 73.6 (82) 76.1 (68) 68.7 (84) 59.2 (92)
Colorado M 75.6 (74) 73.8 (82) 72.7 (61) 66.8 (55)
Pictured Rocks LS 69.4 (95) 75.6 (72) 71.0 (69) 62.3 (76)
Canyon de Chelly M 75.1 (75) 73.8 (81) 68.4 (85) 67.6 (51)
Lava Beds M 71.0 (92) 74.8 (77) 68.8 (83) 61.5 (78)
Big South Fork River and Recreation Area 74.4 (79) 74.5 (78) 69.3 (81) 65.5 (61)
Timpanogos Cave M 67.4 (105) 74.1 (79) 63.9 (103) 46.6 (123)
Channel Islands 74.0 (80) 72.2 (91) 67.9 (86) 66.6 (57)
Oregon Caves Monument and Preserve 73.8 (81) 73.8 (80) 70.8 (71) 60.0 (83)
Shenandoah 73.6 (83) 73.4 (83) 70.7 (72) 58.5 (94)
Jewel Cave M 64.9 (111) 73.0 (85) 67.1 (92) 40.5 (128)
Petroglyph M 72.9 (84) 69.1 (99) 67.8 (88) 64.5 (64)
Natural Bridges M 72.8 (85) 68.6 (102) 67.5 (90) 54.5 (103)
Rainbow Bridge M 72.6 (86) 72.7 (86) 67.9 (87) 28.7 (136)
Apostle Islands LS 66.9 (107) 72.6 (87) 67.1 (91) 54.0 (105)
Great Basin 70.7 (93) 72.3 (89) 72.5 (62) 54.9 (101)
Mammoth Cave 71.0 (91) 72.4 (88) 65.9 (96) 56.5 (98)
Mississippi River & RA 72.3 (87) 70.7 (95) 65.0 (100) 62.5 (75)
Niobrara SR 66.6 (108) 72.3 (90) 64.9 (101) 51.3 (114)
Everglades 72.2 (88) 68.8 (101) 70.2 (77) 71.0 (43)
Bandelier M 72.0 (89) 69.4 (98) 67.0 (93) 59.6 (88)
Cape Lookout SS 68.4 (101) 71.9 (92) 65.5 (98) 53.6 (108)
Guadalupe Mountains 71.3 (90) 68.3 (103) 65.3 (99) 63.4 (71)
Little River Canyon Preserve 68.3 (103) 71.2 (93) 62.4 (109) 54.6 (102)
Scotts Bluff M 68.7 (99) 69.8 (97) 65.8 (97) 53.2 (110)
El Malpais M 69.5 (94) 67.7 (105) 64.4 (102) 59.2 (91)
Gila Cliff Dwellings M 69.2 (96) 65.5 (112) 61.0 (114) 59.8 (84)
Grand Portage M 62.8 (120) 69.1 (100) 62.8 (105) 47.5 (121)
Chiricahua M 68.9 (97) 59.1 (126) 59.6 (119) 62.7 (72)
Sunset Crater Volcano M 68.7 (98) 68.0 (104) 63.3 (104) 57.4 (96)
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Table D1: Park awesomeness ratings (continued)

Park Spring Summer Fall Winter

Big Thicket Preserve 68.4 (100) 67.5 (106) 62.5 (108) 59.1 (93)
Congaree 68.4 (102) 64.0 (117) 58.7 (120) 59.5 (89)
Casa Grande Ruins M 68.2 (104) 56.8 (131) 56.6 (124) 63.8 (67)
Big Cypress Preserve 67.2 (106) 61.6 (121) 58.4 (122) 62.6 (74)
Florissant Fossil Beds M 64.1 (115) 67.0 (107) 62.6 (107) 51.5 (113)
Fire Island SS 62.0 (123) 66.6 (108) 61.1 (113) 53.3 (109)
North Cascades 57.5 (129) 66.5 (109) 61.6 (111) 28.3 (137)
Fossil Butte M 64.1 (114) 66.5 (110) 62.7 (106) 44.8 (124)
Missouri Recreational River 64.7 (113) 65.1 (114) 66.5 (95) 55.9 (100)
Capulin Volcano M 62.9 (119) 65.7 (111) 60.1 (116) 49.8 (116)
Tonto M 65.6 (109) 55.4 (133) 54.5 (127) 59.7 (87)
Upper Delaware Scenic and Recreational River 63.0 (118) 65.3 (113) 60.8 (115) 46.6 (122)
El Morro M 65.3 (110) 63.5 (118) 58.5 (121) 54.0 (106)
Hovenweep M 64.8 (112) 62.9 (119) 59.6 (118) 48.0 (120)
Lake Chelan RA 62.6 (121) 64.5 (115) 61.5 (112) 49.6 (118)
Aztec Ruins M 63.5 (116) 64.4 (116) 59.8 (117) 52.1 (111)
Obed Wild and Scenic River 63.2 (117) 62.4 (120) 56.8 (123) 54.4 (104)
Salinas Pueblo Missions M 62.1 (122) 60.1 (123) 56.2 (125) 51.9 (112)
Gauley River RA 54.5 (132) 58.0 (129) 61.9 (110) 42.9 (126)
Dry Tortugas 60.4 (124) 59.7 (124) 54.8 (126) 56.2 (99)
Isle Royale 49.3 (136) 60.2 (122) 52.3 (132) 27.1 (138)
Pipestone M 59.6 (125) 58.2 (128) 54.3 (129) 35.8 (132)
Cumberland Island SS 59.6 (126) 57.0 (130) 51.1 (134) 50.7 (115)
Hagerman Fossil Beds M 59.0 (127) 59.3 (125) 54.4 (128) 49.6 (117)
Agate Fossil Beds M 56.1 (131) 58.5 (127) 53.1 (130) 32.0 (135)
George Washington Carver M 58.1 (128) 55.3 (134) 52.4 (131) 48.4 (119)
Tallgrass Prairie Preserve 56.8 (130) 55.8 (132) 52.3 (133) 38.4 (131)
Bluestone SR 37.5 (138) 54.7 (135) 49.1 (135) 23.4 (139)
Effigy Mounds M 53.5 (133) 53.5 (136) 48.3 (136) 44.6 (125)
Booker T Washington M 51.3 (134) 50.6 (137) 46.1 (137) 40.1 (129)
Russell Cave M 51.1 (135) 50.3 (138) 44.9 (138) 41.3 (127)
Alibates Flint Quarries M 48.9 (137) 47.6 (139) 43.9 (139) 35.4 (133)
Rio Grande Wild and Scenic River 36.8 (139) 24.9 (140) 26.6 (140) 33.0 (134)

Note: The table shows each park’s maximum rating by season for 2018. I rank these maximum ratings
by season, in parentheses. The table’s rows are ordered by the maximum park effect across the entire
year.
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E Data appendix

E.1 Weather Data

To construct a park-month panel of weather variables, I obtain monthly temperature and precipitation

summaries for weather stations from the National Center for Environmental Information’s Global Summary

of the Month database. I use two variables from these monthly summaries: (1) the average daily high

temperature and (2) the number of days with great than one-tenth of an inch of precipitation (I call these

days “precipitation days”). Not all parks have weather stations within their boundaries, and some weather

stations are missing data. Thus, constructing a balanced panel of weather observations at the park-level is

a nontrivial exercise. Auffhammer and Kellogg (2011) face a similar problem, and I follow their approach to

selecting weather stations and imputing missing observations.

For each park, I select the nearest station with more than 50 percent complete data as the “primary

station” for the park. If two stations are within the park’s boundaries, then I break the tie by selecting the

station with more complete data. Of the 140 parks in my sample, 82 have a primary station within their

boundaries, and on average, the primary stations are 2 miles from their park. These primary stations are

missing 18 percent of their monthly observations.

To impute the missing primary station data, I use gridded PRISM weather observations.13 For each

primary station, I regress non-missing primary station observations on the nearest PRISM observations. I

use the coefficient estimates from this simple regression to impute the missing primary station data.

I assess the performance of this imputation by dropping 20 percent of the observed primary station

data, imputing the observations as if they were missing, and comparing the imputed observations to the

true observations. The mean absolute error is 0.85◦F when imputing the average high temperature variable

and 0.78 days when imputing the number of precipitation days. The average R-squared for the imputation

regressions is 0.99 when imputing temperature and 0.82 when imputing the number of precipitation days.

The predictive power of the imputation regressions and the relatively small mean absolute error suggest the

imputation provides reasonable estimates for the missing primary station observations.

E.2 Park attribute data sources

• Elevation: U.S. Geological Survey (2022b)

• Road miles: U.S. Census Bureau (2019)

13The PRISM weather data are available at a 4km grid across the contiguous United States and do not contain any missing
observations.
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• Trail miles: U.S. Geological Survey (2022a). I compare the USGS trails data to administrative trail

data from the NPS. Park-level trail mileages from these two datasets are similar (R-squared 0.99).

These datasets show that eleven parks do not have trails. For these eleven parks, I inspect park

websites and sum the mileage of advertised trails.

• Coastal: Curdts (2011)

• Large lakes and reservoirs: U.S. Geological Survey (2019)

• Ferry: Park websites contain “Direction & Transportation” or “Getting here” pages.

• Wildlife: U.S. National Park Service (2019)

• Visits per day: Visitors Use Statistics, U.S. Department of the Interior (n.d.)

• Temperature and precipitation: PRISM Climate Group, Oregon State University (2014)

• Size: U.S. National Park Service Land Resources Division (2024)

• Designation: U.S. National Park Service (2024)

• Entrance fees: Provided by NPS Social Sciences Division upon request

Several of these datasets are not measured at the park level: elevation, roads, trails, large lakes and

reservoirs, temperature and precipitation. Thus, I also make use of park boundary shapefiles from National

Park Service - Land Resources Division (2022).

E.3 NPS Visitor Services Project On-Site Surveys

To augment my visitor count data, I obtain five statistics from on-site surveys conducted by the NPS Visitor

Services Project and the NPS Socioeconomic Monitoring Program. These statistics vary by park and the

season of the year. I use three statistics, (1) the re-entry rate, (2) the proportion of domestic visitors, and

(3) the proportion of primary purpose trips, to convert raw visitor counts into the number of domestic,

primary purpose trips. I use the last two statistics, (4) average stay length and (5) average group size, when

calculating travel costs.

The NPS conducted 312 on-site surveys for the Visitor Services Project and 14 (as of December 2023) for

the Socioeconomic Monitoring Program. I obtained summary statistics for Visitor Services Project surveys

from Washington State University’s online database (VSP) and Socioeconomic Monitoring survey responses

from the NPS Social Sciences Division upon request. Of the 326 total surveys, 109 were conducted at parks

in my sample more recently than 1995, and 70 of the 140 parks in my sample conducted at least one survey
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since 1995 (some parks conducted multiple surveys). For the 70 parks without an on-site survey, I impute

the five statistics required for my analysis.

Most surveys do not include every question needed to calculate these five statistics. I observe 62 re-

entry questions, 108 domestic visitor questions, 50 primary purpose questions, 103 stay length questions,

and 70 group size questions. The questions are standardized for all parks. Here are the questions from the

Yellowstone NP Winter 2012 survey:

• Re-entry rate: “On this visit, how many times did your personal group enter Yellowstone NP during

your stay in the area (within 150 miles of the park)?”

• Domestic visitors: “For your personal group on this visit, what is your country of residence?”

• Trip Purpose: “How did this visit to Yellowstone NP fit into your personal group’s travel plans?”

Possible answers: “Primary destination”, “One of several destinations”, “Not a planned destination”

• Stay length: “For this trip, please list the total time your personal group spent in Yellowstone NP.”

This answer is reported in hours when the trip length was less than 24 hours and days when the trip

lasted longer than 24 hours.

• Group size: “On this visit, how many people including yourself, were in your personal group?”

These questions allow me to calculate the five statistics of interest. When calculating the proportion of

primary purpose trips, I count “One of several destinations” and “Not a planned destination” as non-primary

purpose trips.

Using these survey data, I construct a dataset that contains these five statistics for each park in each

season. For park-seasons when survey data are not available, I impute the missing statistics. I distinguish

two cases in my imputation procedure. In the first, the park has conducted a survey at some point, but it

is missing data for at least one season. For example, Acadia NP conducted a survey in summer, but it is

missing data for spring, fall, and winter. In this case, I impute the missing data using the equation:

Yjs = ϕj + λs + ϵjs (6)

where Y is the statistic to be imputed (e.g., re-entry rate, proportion of domestic visitors); ϕ is a park fixed

effect, and λ is a season-of-the-year fixed effect.

The second imputation case is when a park has never conducted a survey. In this case, I cannot estimate

the park fixed effect like I do in equation 6. Instead, I estimate sixteen models that predict the survey

statistic of interest using flexible functions of park attributes. For each statistic, I identify the model with
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the lowest mean-squared error in a ten-fold cross-validation exercise. I use these preferred models to impute

the missing park-season statistics.

The survey data and imputation procedure provide the five statistics for each park in each season-of-the-

year. The average statistics are: 1.81 entries per trip, 93 percent domestic visits, 53 percent primary purpose

trips, 1.58 days per trip, and 3.49 visitors per group. I now describe how I use these statistics to adjust the

raw visitor counts.

E.4 NPS Visitor Use Statistics

I adjust the raw Visitor Use Statistics visitor count data to count trips rather than park entries, drop non-

primary purpose visits, and drop international visits. I adjust for re-entry, because if visitors enter a park

multiple times on the same trip, they do not pay the full travel costs for each entry. I drop non-primary

purpose visits to stay consistent with best practices in the recreation demand literature. Finally, I drop

international visits, because my model and survey data consider only domestic visitation. These steps yield

an estimate of the number of domestic, primary purpose visits to each national park.

To begin, I smooth the park-season-of-the-year panel of re-entry, primary destination, and domestic

visitation statistics. I assume that a statistic applies to the midpoint of each season (e.g., July for summer),

and I linearly impute the statistics between these midpoints. This smoothing process yields a park-month-

of-the-year panel, and it prevents inter-season jumps in the adjusted visitor counts.

With a park-month-of-the-year panel of re-entry, primary destination, and domestic visitation statistics,

I adjust the raw visitor counts using the following equation:

Adj. V isitsjt =(
V isitsjt

AvgEntriesjm(t)

)
P
(
Domesticjm(t)|PrimaryDestinationjm(t)

)
P
(
PrimaryDestinationjm(t)

)
(7)

where j indexes parks and m(t) denotes the month-of-the-year of month-of-sample t. Note that this equation

implicitly assumes that the average re-entry rate for primary purpose, domestic visits equals the average

re-entry rate for all visits at the park in the season. Some version of this assumption is necessary, as I do

not observe separate re-entry rates for primary purpose and non-primary purpose visits or domestic and

international visits.

I further assume that no international visits are primary purpose visits. Again, some version of this

assumption is necessary to simplify the conditional probability in equation 7. Given that international travel
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is often costly, it seems reasonable to assume that the vast majority of international trips have “several

planned destinations”, and thus, qualify as non-primary purpose trips for my analysis. This assumption

simplifies the visit adjustment equation to:

Adj. V isitsjt =

(
V isitsjt

AvgEntriesjm(t)

)
P
(
PrimaryDestinationjm(t)

)
(8)

Dividing by the average number of entries converts the raw visitor counts to trips, rather than park entries.

Multiplying by the fraction primary destination trips yields the adjusted visitor count, or the number of

domestic, primary purpose trips to park j in month-of-sample t.

Adjusted visitor counts are 36 percent of their corresponding raw counts, on average. For roughly 80

percent of the parks in my sample, total adjusted visitation across the entire sample is 20 to 40 percent

of their raw visitation. Six parks have adjusted visitation less than 15 percent of their raw visitation: Big

Cypress NPRES (7 percent), Cape Cod NSS (9 percent), Grand Teton NP (10 percent), Pipestone NM

(12 percent), Curecanti NRA (13 percent), and Zion NP (14 percent). Two parks have adjusted visitation

greater than 65 percent of their raw visitation: Biscayne NP (83 percent) and Delaware Water Gap NRA

(66 percent). Yet, adjusted visitation remains highly correlated with raw visitation with an R-squared of

0.83 (figure E1).

Adjusting the visitor counts preserves overall visitation trends (figure E2). In particular, both adjusted

and raw visitor counts reveal a large increase in visitation between 2013 and 2017.

Adjusting visitor counts dampens seasonal visitation patterns (figure E3). Both raw and adjusted counts

capture summer visitation peaks, but this peak is less dramatic when using adjusted counts. This is because

summer trips tend to have higher re-entry rates (2.0 entries in summer versus an average of 1.76 in other

seasons) and because summer trips are less likely to be primary purpose trips (47 percent versus 59 percent).

For the estimation procedure, I convert visitor counts to visitation shares. I assume the market size is

the U.S. population times 0.716, which is the fraction of the 2008 CSAP respondents that “Strongly agree”,

“Somewhat agree”, or “Neither agree nor disagree” with the statement “I plan to visit a unit of the National

Park System within the next 12 months.”

F Calculating travel costs

This appendix explains the procedure for calculating driving and flying travel costs. The procedure is based

on English et al. (2018)’s travel cost calculations, which also compute driving and flying travel costs for

respondents across the United States. I apply the procedure to calculate quarterly driving and flying travel
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Figure E1: Comparing Raw and Adjusted Annual Visitation by Park
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Note: The figure plots average annual adjusted visitation on the vertical axis and average annual raw visitation on
the horizontal axis.

Figure E2: Comparing Raw and Adjusted Visitation Trends
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Note: The figure plots annual system-wide visitation divided by 2005 visitation. The trend in adjusted visitor counts
closely matches the trend in the raw visitor counts.
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Figure E3: Comparing Raw and Adjusted Seasonal Visitation Patterns
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Note: The figure compares the share of system-wide visitation occurring in each month-of-the-year using adjusted
visitor counts and raw visitor counts.

costs for respondents in several datasets. First, I compute travel costs for respondents in the 2008 and 2018

waves of the Comprehensive Survey of the American Public (CSAP) telephone survey. I average respondents’

travel costs across quarters to produce the travel cost variable that enters the estimation routine. Second,

I compute quarterly travel costs for a 1 percent subsample of the annual American Community Survey

microdata from 2005 to 2019. These computations produce 60 quarters (four quarters times fifteen years)

of travel costs that enter the calibration procedure.

F.1 Calculating Driving Travel Costs

I calculate the round-trip driving travel cost (CD
ij ) beween each respondent’s (i) home and each national

park (j) in each quarter (q). The driving travel cost is a function of the one-way driving mileage between

the respondent’s home and the unit (dij) and the one-way driving time (tij). I calculate driving mileages

and times using PC∗Miler.14 Given the driving mileages and times, I calculate the driving travel cost as

CD
ijq = 2

[(
pdiqdij + phqhij

)
/n+ ptitij

]
(9)

where pdiq is the per-mile marginal cost of driving, phq is the average nightly hotel rate, n is the average group

14I use the following settings when calculating driving mileages and times in PC∗Miler: Routing type = “practical”, Units =
0, Over Perm = 0, Height = 0, Width = 96, Length = 1, Weight = 1000, Axle = 2, LCV = 0.
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size, and pti is respondent i’s per-hour cost of travel time. This equation is identical to English et al.’s except

that it does not include toll costs, because my version of PC∗Miler does not include toll cost calculations.

The per-mile marginal cost of driving (pdiq) is the sum of per-mile marginal costs of (1) maintenance, (2)

depreciation, and (3) gas. I obtain per-mile maintenance and depreciation costs from annual AAA “Your

Driving Costs” reports. I define maintenance costs as the sum of AAA’s reported per-mile maintenance and

tire costs for an Average Sedan. AAA reports depreciation costs relative to a 15,000-mile baseline, which I

use to calculate per-mile depreciation costs. For example, the 2013 AAA report estimates that an Average

Sedan that drives 10,000 miles would depreciate $266 less than an Average Sedan that drives 15,000 miles

and an Average Sedan that drives 20,000 miles would depreciate $231 more than an Average Sedan that

drives 15,000 miles. This implies a per-mile depreciation cost of $0.050 = ($266 + $231) / 10,000 miles.

Due to the availability and quality of cost data from the AAA reports, I impute per-mile maintenance costs

for four years and per-mile depreciation costs for six years. I describe these imputations in more detail in

section F.2.

The final input to the per-mile marginal cost of driving is the per-mile cost of gas. I calculate quarterly

per-mile gas costs using regional gasoline prices from the Energy Information Administration (U.S. Energy

Information Administration, 2024) and average light duty vehicle fuel efficiency from the Bureau of Trans-

portation Statistics (Bureau of Transportation Statistics, 2023). I average weekly gasoline prices to produce

a region-quarter panel of gas prices from 2005 through 2019, then I divide gas prices by the average efficiency

in the corresponding year to find the per-mile marginal cost of gas.

Figure F1 shows the components of the quarterly per-mile marginal cost of driving. The total per-mile

marginal cost averages 26.4 cents from 2005 to 2019. Maintenance and depreciation costs are relatively

stable, making up around 7 cents and 5 cents of the total per-mile cost. The per-mile gas cost makes up

the largest portion of the total per-mile driving cost, and it varies more than maintenance and depreciation

costs, ranging between 9 cents and 21 cents.

I calculate quarterly hotel rates using English et al.’s reported average nightly hotel rate of $114 in 2012.

I scale this rate by the “Other lodging away from home” component of the Consumer Price Index to find

quarterly average hotel rates from 2005 through 2019. I calculate the number of hotel nights by dividing the

one-way travel time by twelve hours and rounding down — i.e., I assume respondents can drive up to twelve

hours in one day of travel.

Because I do not observe the average group size in my survey data, I incorporate additional on-site

survey data. I describe these data in the Data Appendix. Averaging average group sizes across all parks

and seasons yields an average group size of 3.49 people trip. I use this as the n in the driving travel cost

equation. Finally, I assume the cost of an hour of travel time, pti, is one-third of a respondent’s hourly wage.
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Figure F1: Per-mile driving costs over time

0.0

0.1

0.2

0.3

2005 2007 2009 2011 2013 2015 2017 2019

C
os

t p
er

 m
ile

 (
20

18
 U

S
D

)

Gas Depreciation Maintenance

Note: The figure shows the components of the per-mile driving cost over time. Per-mile gas prices vary by region,
and their national average is shown here.

I approximate each respondent’s hourly wage by dividing their income by 2080 hours (40 hours per week

times 52 weeks per year).

Given these inputs, I calculate the one-way driving travel cost for each respondent-park combination. I

multiply by two to convert one-way costs to roundtrip costs, and I convert roundtrip driving travel costs

into 2018 dollars.

Roughly two-thirds of the driving travel cost comes from the cost of time, rather than mileage and hotel

costs. As an example, consider a road trip from Greenville, NC to Yellowstone National Park. The trip

requires approximately 2,200 miles and 33 hours of driving one-way. The average per-mile driving cost is

about 25 cents per-mile and 33 hours of one-way driving requires two nights in a hotel room at $136 per

night. Summing these mileage and hotel costs and dividing by the average group size of 3.43 yields one-way

mileage and hotel costs of $240 = (0.25 ∗ 2200 + 2 ∗ 136)/3.43. Meanwhile, the average cost of travel time

for the 2008 survey respondents is $12.57 per hour, which implies the one-way cost of time is $415.

F.2 Imputing Maintenance and Depreciation Cost

To produce time series of maintenance and depreciation costs, I adjust some of the raw AAA driving cost

data. These adjustments are necessary because (1) I could not find the AAA report for 2005, (2) the Average

Sedan category was removed from reports beginning in 2017, and (3) depreciation costs in 2006 and 2007
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are three times larger than other years.

To create an annual time series of maintenance costs for AAA’s Average Sedan vehicle classification,

I impute the 2005 maintenance cost by averaging the 2004 and 2006 maintenance costs. Then, I impute

maintenance costs for Average Sedans in 2017, 2018, and 2019. For the 2017–2019 imputation I regress

Average Sedan maintenance costs on Small, Medium, and Large Sedan maintenance costs for 2005 through

2016. Using the parameter estimates from this regression, I predict Average Sedan per-mile maintenance

costs in 2017, 2018, and 2019. These two imputations produce an annual time series of per-mile maintenance

costs for Average Sedans between 2005 and 2019.

I produce an annual time series of depreciation costs for Average Sedans in two steps. First, I impute

per-mile depreciation costs for Small, Medium, and Large Sedans in 2005, 2006, and 2007 by regressing

2008–2019 depreciation rates for those sedan categories on the year, vehicle dummy variables, and the year

interacted with the vehicle dummy variables. I use these parameter estimates to predict per-mile depreciation

costs for Small, Medium, and Large Sedans for 2005, 2006, and 2007. After this step, I have a panel of

depreciation rates for Small, Medium, and Large Sedans for 2005 through 2019. Second, I impute per-mile

depreciation costs for Average Sedans by regressing Average Sedan per-mile depreciation costs on Small,

Medium, and Large Sedan per-mile depreciation costs for 2008 to 2016. Using the parameter estimates from

this regression and the 2005-2019 panel of depreciation rates for Small, Medium, and Large Sedans, I predict

per-mile depreciation costs for Average Sedans for 2005–2007 and 2017–2019.

F.3 Calculating Flying Travel Costs

Following English et al., I sum five components to calculate flying travel costs: (1) the cost of driving from

a respondent’s home to the origin airport, (2) the cost of parking at the origin airport, (3) the cost of

flying from the origin airport to the destination airport, (4) the cost of renting a car, and (5) the cost of

driving from the destination airport to the national park. Because individuals may choose from several

origin and destination airports when taking their trip, I calculate flying travel costs for all routes through

four origin airports and four destination airports. This leads to sixteen possible airport combinations for

each respondent-park-pair. For each respondent-park pair, I identify the minimum travel cost route and

assign its travel cost as the respondent-park pair’s flying travel cost.

I begin by identifying the origin airports. For each respondent, I calculate the driving mileage between

their home and every airport with greater than 100,000 enplanements in 2012. I keep the four closest airports

as their origin airports. If none of these four airports is a medium or large airport, as classified by the FAA’s

2012 enplanement data (Federal Aviation Administration, 2024), then I replace the fourth closest airport
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with the closest medium or large airport. I repeat this process to identify the four destination airports for

each national park.

Creating all combinations of these origin and destination airports produces sixteen possible routes for

each respondent-park pair. I calculate respondent i’s flying travel cost of reaching park j via their origin

airport m and destination airport n in quarter q as

CF
imnjq = 2CD

imq + CParking
mq + 2CFlight

imnq + CRent
q + 2CD

njq (10)

The first and last terms, CD
imq and CD

njq, represent the cost of driving from the individual’s home to the

origin airport and the cost of driving from the destination airport to the national park. I calculate these

driving costs according to the steps outlined in section F.1.

The second term, CParking
mq , represents the cost of parking at the origin airport. It is the product of the

average daily airport parking rate and the number of required parking days. I use separate parking rates

for small airports and large/medium airports. I calculate the number of required parking days as the sum

of the average time spent at the park on all national park visits (from the on-site survey data), the flight

time, and the driving time from the destination airport to the park. I calculate the cost of renting a car,

CRent
q , by taking the product of the national average rental care rate and the number of required rental car

days. To estimate the rental car rate for each quarter, I take English et al.’s estimate of the 2012 national

average rental car rate, $54.11, and scale it by the Consumer Price Index for car rentals (U.S. Bureau of

Labor Statistics, 2024). I calculate the number of required rental car days as the number of required parking

days minus the flight time.

The final component of equation 10 is the cost of flying from the origin airport to the destination airport.

The cost of the flight depends on the flight itinerary, as individuals could fly directly from origin airport

m to destination airport n or have a layover. My flight data come from Table 6 of the Consumer Airfare

Report, which includes information for single flight segments, effectively all direct flight itineraries. To more

accurately represent the full set of itineraries between origin and destination airports, I generate all possible

flight itineraries that can link origin and destination airports with at most one layover using the segments

from the direct flights in Table 6 of the Consumer Airfare Report in that quarter.

I calculate individual i’s cost of flying from origin airport m to destination airport n using itinerary z in

quarter q as

CFlight
imnqz = pti

(
timeairport + timeflight + timelayoverz

)
+ pairfaremnqz (11)

The term pairfaremnqz represents the monetary cost of airfare. For this, I use quarterly average airfare for all
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airport city-market pairs averaging more than ten passengers per day from Table 6 of the Consumer Airfare

Report. For layover itineraries, I assume the airfare is the sum of the airfare for the two flight segments.

As in equation 9, the coefficient pti represents individual i’s cost of travel time. I decompose the time

costs associated with flying into three components: (1) the time spent at the airport before and after the

flight, (2) the flight duration, and (3) the time spent during layovers. I assume the time spent at the airport

before and after the flight is two hours. I approximate the flight time using the distance between the airports

and English et al.’s estimated parameters for the relationship between flight time and distance. In a simple

regression of flight times on flight distances, they estimate an intercept of 42.5 and a slope of 0.1213. I use

median layover times from English et al. that vary by airport size: 80 minutes for small airports, 55 minutes

for medium airports, and 70 minutes for large airports.

These calculations provide me with multiple flying travel costs for each respondent-park combination. If

each destination airport can be reached from each origin airport in one layover or less, then there are sixteen

possible origin-destination airport routes for each individual-park pair. Furthermore, each origin-destination

airport route has multiple itineraries – it could be reached directly or via a layover. I take the minimum of

flying travel costs across all routes and itineraries as respondent i’s flying travel cost to reach national park

j.

Although my flying travel cost calculations closely follow English et al., I do use different airfare and

flight itinerary data. English et al. use the flight itinerary for the 30th percentile airfare between the origin

and destination airports from DB1B Origin to Destination Surveys. Because my analysis period spans fifteen

years and 60 quarters, replicating their calculations would require over 100GB of ticket-level data. I use the

Consumer Airfare Report, which summarizes the ticket-level data and thus requires much less storage.

Figure F2 shows average driving and flying travel costs for each quarter of the survey period. Average

driving travel costs remain consistent across the analysis period. Average flying travel costs steadily increase,

beginning around $600 and ending just above $750.

Figure F3 shows the average travel costs for 50-mile distance bins. Both driving and flying travel costs

increase with distance, but flying travel costs increase much more gradually. On average, flying is more

expensive than driving for trips under 1,000 miles (one-way), and it is cheaper than driving for longer-

distance trips.
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Figure F2: Average Driving and Flying Travel Costs
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Note: The figure shows average round-trip driving travel costs (brown circles) and flying travel costs (blue triangles)
for all respondent-park pairs in the 1 percent ACS sample for each quarter of the analysis period. All travel costs
are reported in real 2018 dollars.

Figure F3: Travel costs increase with distance
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Note: The figure plots survey respondents’ average round-trip travel costs on one-way driving distance for 50-mile
distance bins. The brown line with circles shows average driving travel costs, and the blue line with triangles shows
average flying travel costs.
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